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Abstract

In this thesis, we approach the problem of “one-sided” statistical tests and cor-
responding confidence regions for a multivariate location parameter in the one-
sample setting. By “one-sided”, we mean that these methods incorporate in-
formation on the direction of a deviation from the null hypothesis that shall be
detected. A strong emphasis is on nonparametric methods. Particular attention
is also paid to the distinction between methods based on simple and those based
on composite null hypotheses.

We propose several new test procedures and a graphical method for the com-
parison of different tests. This graphical method is useful for the assessment of
the appropriateness of a test for a specific composite null hypothesis.

Finally, we use a highly flexible definition of confidence regions to derive results
about their properties from those of the corresponding tests. Particularly, we
obtain results about the shape of such regions.

Third printing, September 2007
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Chapter 1

Introduction and Outline

1.1 Historical Background

Elementary statistical textbooks provide many univariate data examples, and
the statistical methods for their analysis are well-known, even to many non-
statisticians. However, practically arising scientific questions tend to be more
complicated – very often, more than one variable is of interest. It may be much
more appropriate to analyze the information of several variables at once instead
of doing separate analyses.

An early example of such a multivariate method can be found in the article by
Hotelling (1931), in which the T 2 statistic was proposed as a multivariate general-
ization of Student’s t for tests about a location parameter. Early nonparametric
multivariate location tests were proposed by Hodges (1955) and Blumen (1958)
(both for the bivariate case). The topic of such nonparametric tests has been
receiving considerable attention during the last years; examples are the articles
by Brown and Hettmansperger (1987), Randles (1989, 2000), Möttönen and Oja
(1995), as well as Larocque, Tardif, and van Eeden (2000).

We will deal with one-sided statistical inference for a multivariate location pa-
rameter. By “one-sided”, we mean that these methods incorporate information
on the direction of a deviation from the null hypothesis that shall be detected.
(An alternative hypothesis corresponding to such a test will also be called “re-
stricted”.) As we will see in Chapter 2, there are many more possibilities for the
specification of such information in the multivariate case than in the univariate
case.

Lehmann (1952) discussed general issues in testing one type of one-sided hy-
potheses. Kudô (1963) and Perlman (1969) made early proposals for multivariate
one-sided tests under the assumption of normality. Among the first nonparamet-
ric procedures for such problems (in the two-sample case) are those by Bhat-
tacharyya and Johnson (1970) and Chatterjee and De (1972). (Many further
nonparametric one-sided location tests will be mentioned in Chapter 4.)



2 1 Introduction and Outline

Most of the publications emphasize the concept of statistical tests, and not
the dual concept of confidence regions. While confidence regions are immediately
implied by the formulation of a (non-randomized) test, the practical aspects of
such methods for multivariate one-sided problems do not seem to have received
much attention.

1.2 Outline

We start with a chapter about different formulations of one-sided null and alter-
native hypotheses about a multivariate location parameter. Chapter 3 introduces
several properties that may be desirable for the tests, e. g. invariance properties
under transformation classes, but also validity under different assumptions on the
distribution of the data. In Chapter 4, we give a review of multivariate tests with
restricted alternatives from the literature.

The following chapters are focused on one-sample tests for cone (especially
convex cone) alternatives. We begin with tests based on componentwise meth-
ods and so-called union-intersection and intersection-union tests as a related,
but more general approach (Chapter 5). In Chapter 6, several nonparametric
tests based on the number of observations in the alternative parameter region
are discussed. Chapters 7 through 9 present specific nonparametric multivari-
ate location tests proposed in the literature and modifications of these tests for
one-sided problems.

We discuss two existing and one novel approach to graphical comparisons of
different multivariate one-sided location tests in Chapter 10. We then apply our
graphical approach to a selection of our own tests and of tests from the literature
in Chapter 11.

In Chapter 12, we examine the connection between hypothesis tests and con-
fidence regions. We use this connection to derive shape properties for different
types of one-sided confidence regions for multivariate location parameters.

Finally, hypothesis tests and confidence regions are illustrated using an exam-
ple from the literature in Chapter 13, and the main achievements of the thesis as
well as possible extensions are discussed in Chapter 14.
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Chapter 2

One-Sided Multivariate Location
Hypotheses

The usual p-variate one-sample location problem can (up to translations, see
Section 2.4) be formulated as

H0 : ϑ = 0 vs.

H1 : ϑ 6= 0,

where ϑ is a location parameter in R
p. (More general alternatives than this

“shift” alternative will not be considered here.)
The corresponding k-sample problem (k ≥ 2) is

H0 : ϑ1 = . . . = ϑk vs.

H1 : ϑi 6= ϑj for some i, j ∈ {1, . . . , k}.

In some cases, the possible range of parameters is only a subset of R
p. As an

example, some components may be restricted to be non-negative by theoretical
considerations.

Furthermore, before looking at the data, one may already have an idea of the
“direction” of the deviation of the location parameter from the null value, or it
may even be the aim of a study to show a deviation into a specific “direction”.

In all these cases, conventional tests with unrestricted alternatives are inap-
propriate. Their power may be unacceptably low, and they do not allow for
showing a deviation into a specified direction. Thus special tests are needed that
are able to deal with restricted alternatives. (The above-mentioned, quite differ-
ent reasons for the usage of restricted alternatives will be returned to in Section
2.2.)

The usual restricted alternatives in the one-dimensional case are the well-
known one-sided alternatives. It is not obvious how the concept of one-sided
alternatives should be generalized to the multivariate case, so that careful consid-
eration seems worthwhile. Emphasis will be on the one-sample location problem.
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2.1 Basic Multivariate One-Sided Alternatives

In the one-dimensional one-sample setting, there are (up to translations) only
two possible one-sided location (shift) alternatives:

H+
1 : ϑ > 0 and

H−
1 : ϑ < 0,

where the (simple) null hypothesis is

H0 : ϑ = 0.

The generalization to the multivariate case can be done in different ways. For
the ease of formulation and visualization, we focus on the two-dimensional setting
at first.

2.1.1 Direction Alternatives

We can interpret the univariate one-sided alternatives as the (only) two directions
from the origin on the real line. In the bivariate case, if ϑ = (ϑ1, ϑ2)

T is the
(now vector-valued) location parameter again, we can e. g. consider restricted
alternatives of the following form:

Hϕ
1 : 〈ϑ,u〉 > 0,

where 〈·, ·〉 denotes a scalar product (typically, the standard Euclidean scalar
product) and u = (cosϕ, sinϕ)T is the unit vector at the angle ϕ; cf. Figure 2.1.
Thus a projection of ϑ is investigated. We call this type of alternative hypothesis
a direction alternative.

The generalization of the direction alternative approach to the general p-
variate case is straightforward.

-

6

−1 1

−1

1

�
�

�
��3

u

ϕ

Figure 2.1: Specification of a direction alternative.
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2.1.2 Sector and Cone Alternatives

Another possibility is to generalize the idea of partitioning the real line into the
positive half-line R+ and the negative half-line R−. The simplest possibility in
the bivariate case would be to consider half-planes, which is closely related to
the approach using projections. It is perhaps more promising to use the more
general concept of partitioning the plane into two sectors, i. e. to ask if the location
parameter ϑ belongs to a specified (infinite) sector between the angles ϕ1 and ϕ2

(assuming, without loss of generality, ϕ1 < ϕ2); cf. Figure 2.2 (a). The directions
can equivalently be given by the unit vectors u1 and u2 again. Formally, we can
specify such a restricted alternative as

Hϕ1,ϕ2

1 : ϑ 6= 0; ∃ψ ∈ [ϕ1, ϕ2] : cosψ =
ϑ1

‖ϑ‖ , sinψ =
ϑ2

‖ϑ‖ .

(Sometimes, we will also use the open interval (ϕ1, ϕ2) instead of the closed
interval.) We call this type of alternative a sector alternative.

This approach includes the case of half-planes (cf. Figure 2.2 (b), with a
boundary slightly different from that in the direction alternative above). It also
includes the quadrant alternatives, which are of considerable interest in many ap-
plications and have been discussed in several articles (e. g. Kudô, 1963; Chinchilli
and Sen, 1981; Chatterjee and De, 1972; Boyett and Shuster, 1977; Park, Na, and
Desu, 2001). A typical example for a one-quadrant alternative (cf. Figure 2.2 (c))
is the comparison of treatments where a new treatment should be superior to an
old one in two criterions (possibly with equality in one criterion). In some cases,
a treatment will be interesting for further research if it is superior in at least one
of two criterions, regardless of a possible inferiority in the other criterion. This
corresponds to the three-quadrant alternative (cf. Figure 2.2 (d)).

We could think of much more general forms of dividing up the plane. However,
the sectors have the advantage of remaining unchanged if both coordinate axes
are scaled by the same positive factor. The class of sector alternatives is even
closed with respect to affine transformations. From a practical point of view,
especially in a context where nonparametric tests are desirable, it is also often
difficult to specify more than the directions that we expect for a change of the
location parameter.

For the case of p > 2 dimensions, several authors (e. g. Perlman, 1969; Sil-
vapulle, Silvapulle, and Basawa, 2002) have considered positively homogeneous
sets or cones (in a very general sense of the word) as alternative regions, i. e.
sets C ⊂ R

p with the property that x ∈ C implies ax ∈ C for all positive real
numbers a. The most widely-used positively homogeneous sets are the convex
cones . However, neither of these terms is an exact generalization of the concept
of sectors to the multivariate case: In R

2, a sector with an angle of more than π is
not a convex cone, while e. g. any union of two sectors is a positively homogeneous
set but not necessarily a sector. We can define a true generalization of a sector
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Figure 2.2: (a) Specification of a sector alternative; (b) Special sector alternative
with ϕ2 = ϕ1 +π, i. e. half-plane; (c) Special sector alternative with ϕ1 = 0, ϕ2 =
π
2
, i. e. first quadrant; (d) Special sector alternative with ϕ1 = −π

2
, ϕ2 = π, i. e.

first, second, and fourth quadrant.
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by requiring a positively homogeneous set C ⊂ R
p to have a simply connected

intersection with the unit sphere Sp−1. We call such a set C an s-simply-connected
cone. In many cases, it may be sensible to restrict attention to polyhedral cones,
which can be specified by linear inequalities. Again, an important special case
for hypotheses based on componentwise criteria are the orthants , which are the
multivariate analogues of the quadrants.

In Section 2.3, we will deal with some modifications of the one-orthant alter-
native that do not fit into the framework of this section.

2.2 Simple vs. Composite Null Hypotheses

In the preceding section, we have written the null hypothesis as H0 : ϑ = 0,
i. e. as a simple (point) hypothesis. In the univariate case, for the tests widely
used, it is e. g. irrelevant whether H0 : ϑ = 0 or H0 : ϑ ≤ 0 is tested against
H1 : ϑ > 0: If the test keeps its level for H0 : ϑ = 0, it also keeps its level for the
composite null hypothesis. In the multivariate case, however, such a difference
may be important, and, depending on the context, a composite null hypothesis
may be more appropriate.

LetH1 : ϑ ∈ Θ1 be the multivariate restricted alternative considered, e. g. with
a positively homogeneous set for Θ1. If we only consider a restricted alternative
in order to enhance the power for ϑ ∈ Θ1 (because of some a priori conjecture)
and if the aim is to show that ϑ is different from 0, we can use the simple null
hypothesis ϑ = 0. For ϑ ∈ R

p
r ({0} ∪ Θ1), we do not have to consider the

level or the power in this case. The same trivially applies if the set Θ ⊂ R
p

of theoretically possible parameter values does not contain any point outside of
{0} ∪ Θ1.

If, in contrast, {0} ∪ Θ1 is a true subset of Θ and if we want to show a
deviation into a specific direction (the region Θ1), we have to consider a rejection
of the null hypothesis for ϑ ∈ Θ r ({0} ∪ Θ1) as a type I error. In this case,
tests with unrestricted alternatives do not only have poor power, they even do
not necessarily respect the specified level. The appropriate hypotheses are then
H0 : ϑ ∈ Θ r Θ1 vs. H1 : ϑ ∈ Θ1, i. e. the null hypothesis is composite. A typical
example is that an amelioration (in some sense) in a treatment group with respect
to a control group has to be shown. Berger (1982) mentions the example of a
product that should be shown to meet all of several standards. In such cases, a
composite null hypothesis is needed.

By “composite null hypothesis”, we will usually mean the largest possible
composite null hypothesis, i. e. H0 : ϑ ∈ Θ0 = Θ r Θ1; intermediate cases will be
indicated explicitly. Often, Θ will be taken to be R

p for simplicity.
The case where H0 is composite is more appropriate for many applications,

but also more difficult to handle than the case of a simple null hypothesis because
the level has to be met for every ϑ ∈ Θ0 = ΘrΘ1. (This may be the reason why
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Figure 2.3: Special alternative hypotheses for non-inferiority problems: (a) Al-
ternative region as in Bloch, Lai, and Tubert-Bitter (2001); (b) Intersection with
a sector alternative.

it has only rarely been treated in the literature.) We will consider both types of
null hypotheses occasionally. Namely, while we will use simple null hypotheses
for the construction of some of our tests, we will place emphasis on the case of
composite null hypotheses for assessing the performance of the tests.

One of the few articles that emphasize the importance of the distinction be-
tween the two types of null hypotheses is the one by Tang (1998).

2.3 Hypotheses for Non-Inferiority Problems

In univariate non-inferiority problems (also called “one-sided equivalence prob-
lems”), the intention is to show that some parameter ϑ is above or at least
approximately equal to a specified value ϑ0. Such a problem can be formalized
as H0 : ϑ ≤ ϑ0 − ε against H1 : ϑ > ϑ0 − ε, where ε > 0 is some deviation that
is considered irrelevant (e. g. Wellek, 2003). This is just a shifted version of the
usual one-sided problem.

A more sophisticated formulation is based on an indifference region (Jennison
and Turnbull, 1993) or range of equivalence (Freedman, Lowe, and Macaskill,
1983) between ϑ0−ε and ϑ0 +δ that separates the null and alternative parameter
regions. If the true parameter is within this interval, it is not important whether
we decide for H0 or for H1, and therefore we can neglect the rejection probabilities
in this interval.

When we turn to the multivariate case, various approaches are possible: Bloch,
Lai, and Tubert-Bitter (2001) propose to test H0 : ϑ ∈ R

p
r Θ1 against H1 : ϑ ∈

Θ1 with Θ1 = {ϑ : ϑj > −εj, ∀ j ∈ 1, . . . , p, and ∃ j ∈ 1, . . . , p : ϑj > 0}. This
alternative region Θ1 is shown in Figure 2.3 (a) for the bivariate situation. Jen-
nison and Turnbull (1993) also propose this kind of alternative as one possibility;
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Figure 2.4: Non-inferiority alternative hypotheses (hatched) with indifference
regions (dotted): (a) Cartesian product of componentwise indifference regions;
(b) Indifference region reduced to the points where not all components have the
same sign.

the other three possibilities proposed in their Figure 2 are shifted versions of an
orthant alternative.

Conaway and Petroni (1996) formulate a sector alternative for the vector of the
response rate and the toxicity rate in a tumor therapy. They allow for a trade-off
between response and toxicity – e. g. a toxicity rate slightly above some reference
value might be acceptable if the response rate is clearly above its reference value.
This is a genuinely bivariate characterization of non-inferiority, in contrast to the
ideas based on componentwise non-inferiority.

We can also combine the two approaches above: If we take the intersection of
a sector alternative and the alternative from Figure 2.3 (a), the resulting alter-
native region is given in Figure 2.3 (b). It allows for a trade-off between the two
parameters near the origin (in the sense proposed by Conaway and Petroni), but
for each parameter, a strict lower bound is also given.

Based on the univariate indifference region approach, the most obvious mul-
tivariate version is the specification of the multivariate indifference region as a
Cartesian product (−ε1, δ1] × . . .× (−εp, δp], as in Figure 2.4 (a). It may also be
interesting to look at a slightly smaller indifference region that does not include
parameter values having the same sign in all components, as shown in Figure
2.4 (b). As can easily be seen, the border between null and alternative region in
both parts of Figure 2.3 goes through the indifference region in Figure 2.4 (b) if
tanϕ1 = −ε2/δ1 and tan(ϕ2 − π/2) = −ε1/δ2. This means that if some level α
test for one of the problems without indifference region has some given power for
every point in the alternative region, then this test is also of level α (or less) and
has (at least) the same power for the situation in Figure 2.4 (b). If, in turn, a
test is suitable when using the reduced indifference region from Figure 2.4 (b), it
is also suitable for problems with the full indifference region in Figure 2.4 (a).
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Tamhane and Logan (2004) propose a similar combination of hypotheses as
in Figure 2.4 (a), but they incorporate the indifference region into the null hy-
pothesis. This is just a shifted version of the situation in Figure 2.3 (a).

2.4 Translations of the Hypotheses

For notational simplicity, we have formulated all hypotheses in a version that
is centered at 0. Of course, we also need tests for any hypothetical location
parameter value other than the origin or for composite null and alternative regions
that are constructed around some point (a meta-parameter γ ∈ R

p) other than
the origin, i. e. for translated (shifted) versions of our various hypotheses.

We will maintain the simplified setting based on centered hypotheses in the
following chapters. While doing so, however, we tacitly assume that tests for ϑ ∈
Θ0(γ) = γ+Θ0(0) against ϑ ∈ Θ1(γ) = γ+Θ1(0) are derived by application of a
test for ϑ ∈ Θ0(0) against ϑ ∈ Θ1(0) to the translated data X1−γ, . . . ,Xn−γ,
for all γ ∈ Γ, where Γ ⊂ R

p is the set of possible meta-parameters. We also
maintain the short notation Θ0 = Θ0(0) and Θ1 = Θ1(0).

For the construction of confidence regions in Chapter 12, we will have to
return to the general setting and the notation with a meta-parameter γ.

2.5 Two- and Multi-Sample Problems

For the two-sample problem, we can formulate hypotheses analogously to the
one-sample case if we consider the difference of the location parameters, ϑ2 −ϑ1.

Similarly, in the multi-sample case, we can consider differences between lo-
cation parameters of consecutive samples to formulate hypotheses. As in the
univariate case, we may postulate a “strictly positive” difference (in the sense of
the one-sample alternative) for at least one such comparison, and a “nonnegative”
difference (i. e. a zero difference is also allowed) for the others.

There is an additional one-sided problem that has no analogue in the unre-
stricted context: the test for a monotone trend in a sequence of random vectors.
This can be regarded as a degenerate multi-sample problem where each sample
consists of one observation only.
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Chapter 3

Properties of Tests

3.1 Invariance Properties

In the univariate setting, the common nonparametric tests are invariant with re-
spect to quite general classes of transformations of the data. E. g., tests based on
the ranking of the data are obviously invariant under strictly increasing transfor-
mations. For unrestricted alternatives, there has been a variety of proposals for
multivariate nonparametric location tests having desirable invariance properties
under certain transformations; see e. g. Oja (1999) for a review of affine invariant
methods. We give an overview of some possible invariance properties and discuss
their relevance in the context of one-sided tests.

3.1.1 Affine Transformations of p-Variate Data

Definition 3.1.1. Let x be a p-variate (observation) vector, A a p × p matrix,
and b a (fixed) p-variate vector.

(a) x 7→ x + b is a location transformation or translation.

(b) x 7→ Ax is a scale transformation if A is nonsingular and diagonal, i. e. a
diagonal matrix with non-zero diagonal elements.

(c) x 7→ Ax is a component permutation if each row and each column of A
contains exactly one 1 and all other entries are 0.

(d) x 7→ Ax is a rotation if A is orthogonal with determinant 1.

(e) x 7→ Ax is an orthogonal transformation if A is orthogonal.

(f) x 7→ Ax + b is an affine transformation if A is nonsingular. △

Obviously, any location and/or scale transformation is affine. Any component
permutation is an orthogonal transformation, any rotation is also an orthogonal
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transformation, and any orthogonal transformation is affine. Thus the class of
affine transformations contains all the transformations in the above definition.

If n p-variate observations are written as row vectors of an n×p matrix X and
each observation is transformed according to x 7→ Ax + b, this can be written as
X 7→ XAT + B, where B is an n × p matrix containing bT in each row, and the
result is again an n× p matrix with the transformed observations in its rows.

3.1.2 Invariance of Tests

Definition 3.1.2. Let T be a class of transformations T : R
p → R

p. Let SΘ0,Θ1

be a test statistic for H0 : ϑ ∈ Θ0 vs. H1 : ϑ ∈ Θ1, based on n p-variate
observations X1, . . . ,Xn, with Θ0 ⊂ R

p,Θ1 ⊂ R
p

r Θ0.
S is T -invariant if, for all T ∈ T and X i ∈ R

p, i = 1, . . . , n,

SΘ0,Θ1(X1, . . . ,Xn) = ST (Θ0),T (Θ1)(T (X1), . . . , T (Xn)). △

Application of this definition to the transformation classes in Definition 3.1.1
leads to the concepts of translation invariance, scale invariance, component per-
mutation invariance, rotation invariance, orthogonal invariance, and affine invari-
ance, respectively.

3.1.3 More General Transformation Classes

In the univariate case, invariance of tests can not only be postulated for affine (i. e.
linear) transformations. Therefore, in the generalization to the multivariate case,
we can try to preserve invariance under more general classes of transformations
than the affine ones.

Of course, we can consider componentwise strictly monotone transformations,
which can be approximated by application of bicontinuous transformations to
each component (componentwise homeomorphisms). As a class of “genuinely
multivariate” transformations resembling the univariate concept of strict mono-
tonicity, bicontinuous transformations (homeomorphisms) can also be considered.

Figure 3.1 gives an overview of the inclusions between some of the transfor-
mation classes discussed here and in Definition 3.1.1.

3.1.4 Transformations and One-Sided Tests

Under affine transformations, rays are mapped to rays, and positively homo-
geneous sets are mapped to positively homogeneous sets if the origin is moved
appropriately. Therefore, it is adequate to ask whether a test for a positively
homogeneous alternative is invariant under affine transformations (or some sub-
class of affine transformations). Similar considerations apply for componentwise
strictly monotone transformations in the context of orthant alternatives. If we
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Figure 3.1: Inclusions between the different classes of transformations of multi-
variate data.

require affine invariance and invariance under componentwise strictly monotone
transformations, we reach a high degree of independence from the way the data
is represented in the variables.

However, these invariance requirements substantially constrain the choice of
tests, and they are unnecessary for many multivariate applications. Namely, we
can use less stringent requirements if we restrict our attention to special (but
frequent) types of data and hypotheses:

For a direction alternative, a half-space is associated with the hypothetical
direction, the border being the hyperplane that is orthogonal to the given di-
rection. This orthogonality property is generally not preserved under affine (or
scale) transformations, and therefore, invariance under such transformations may
not be a sensible requirement. (Nevertheless, such a requirement may be sensi-
ble if the orthogonality, i. e. the scalar product, is defined in a coordinate system
that depends on the distribution of the data.) Orthogonal transformations do not
change orthogonality, and tests for direction alternatives may sensibly be inves-
tigated for the respective invariance properties. If we examine genuinely spatial
data (i. e. data with all variables measured in the same units and with an arbi-
trary orientation of the coordinate system), orthogonal invariance is an obvious
requirement, while e. g. scale changes are only sensible if they are applied to all
variables simultaneously.

Alternatives that are defined using componentwise criteria (such as orthant
alternatives and most of the alternatives from Section 2.3) do not usually stay
within their class under more general transformations than componentwise homeo-
morphisms. Such alternatives are most interesting in the case of data that is not
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genuinely spatial, where the variables represent an arbitrary collection of mea-
surements typically measured in different units. But in this case, there is hardly
any justification for applying rotations or even general affine transformations.

By construction (see Section 2.4), the tests proposed in the following chapters
will be translation invariant. Most sensible tests will also be invariant under per-
mutations of the components. Note that even a test for hypotheses with different
criteria for the different components may well be invariant under permutations
of the components since the transformation is also applied to the hypotheses for
assessing invariance. A situation where this invariance property is not required
could be the case of several univariate hypotheses of different importance.

The approach using bicontinuous transformations does not seem to be promis-
ing for one-sided problems: It is not difficult to find a bicontinuous transfor-
mation mapping two points that are in the same direction from the origin to
points that are in opposite directions, while leaving the origin unchanged. (Imag-
ine e. g. a bicontinuous transformation T : R

2 → R
2 with T ((0, 0)T) = (0, 0)T,

T ((1, 0)T) = (1, 0)T and T ((2, 0)T) = (−2, 0)T.) Thus, it is not appropriate to
require a test to be invariant under such transformations if one-sided hypotheses
formulated in terms of directions or positively homogeneous sets are considered.

3.2 Unbiasedness

In univariate problems, a test is usually required to be unbiased, i. e. its power
function should be at most α for ϑ ∈ Θ0 and at least α for ϑ ∈ Θ1.

Lehmann (1952) investigates the situation where H0 : ϑi ≤ 0, i = 1, . . . , p
is tested against H1 : ∃ i : ϑi > 0. He shows that the only test that has an
analytic power function and that is unbiased for this problem is the trivial test
with constant power α. We generalize this result to the general sector alternative
(excluding only the half-space case) with the full composite null hypothesis. We
do this in two steps:

Corollary 3.2.1. Let a sample (X1, . . . ,Xn) from a distribution from some
family (Pϑ)ϑ∈R2 be given. Let ϕ : (R2)

n → [0, 1] be a test for H0 : ϑ ∈ Θ0 vs.
H1 : ϑ ∈ Θ1, where Θ1 = R

2
r Θ0 is a sector with angle ψ > π. Assume that ϕ

is an unbiased level α test and that it has an analytic power function.
Then the test is trivial, i. e. the power of the test is constant: β(ϑ) = α under

all ϑ ∈ R
2.

Proof. Let T : R
2 → R

2 be an affine transformation such that T (Θ0) is the
negative quadrant. Define transformed observations X̃ i = T (X i), which have
the distribution P̃ϑ̃ = PT−1(ϑ̃) ◦ T−1.

ϕ̃(X̃1, . . . , X̃n) = ϕ(T−1(X̃1), . . . , T
−1(X̃n)) can be used to test H̃0 : ϑ̃ ∈ Θ̃0

vs. H̃1 : ϑ̃ ∈ Θ̃1 with Θ̃j = T (Θj), j = 0, 1. If β̃ denotes the power function of ϕ̃,
then β̃(T (ϑ)) = β(ϑ).
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For a sample from a distribution from the family (P̃ϑ̃)ϑ̃∈R2 , ϕ̃ is therefore
also an unbiased level α test for H̃0 vs. H̃1 and has an analytic power function.
Because Θ̃0 = T (Θ0) is the negative quadrant, Lehmann’s result can be applied,
and β̃(ϑ̃) = α,∀ ϑ̃ ∈ R

2. But this implies also β(ϑ) = α,∀ ϑ ∈ R
2.

Corollary 3.2.2. Let a sample (X1, . . . ,Xn) from a distribution from some
family (Pϑ)ϑ∈R2 be given. Let ϕ : (R2)

n → [0, 1] be a test for H0 : ϑ ∈ Θ0 vs.
H1 : ϑ ∈ Θ1, where Θ1 = R

2
r Θ0 is a sector with angle ψ < π. Assume that ϕ

is an unbiased level α test and that it has an analytic power function.
Then the test is trivial, i. e. the power of the test is constant: β(ϑ) = α under

all ϑ ∈ R
2.

Proof. Define ϕ̃(X1, . . . ,Xn) = 1 − ϕ(X1, . . . ,Xn), and let its power function
be β̃. Trivially, β̃(ϑ) = 1− β(ϑ). Therefore, ϕ̃ is an unbiased level 1− α test for
H̃0 : ϑ ∈ Θ1 vs. H̃1 : ϑ ∈ Θ0, and its power function is analytic. Due to Corollary
3.2.1, β̃(ϑ) = 1 − α,∀ ϑ ∈ R

2, and it follows that β(ϑ) = α,∀ ϑ ∈ R
2.

From these results, we can see that strict unbiasedness will not be a useful
criterion in most bivariate (and presumably also higher dimensional) problems,
as long as the null hypothesis is composite. However, it is still desirable to have a
“nearly unbiased” test. One method for assessing the bias of a test will be given
in Section 10.3.

3.3 Cone Order Monotonicity

Cohen and Sackrowitz (1998) propose that tests for cone alternatives should sat-
isfy the cone order monotonicity property with respect to Θ1 and/or its positive
dual Θ∗

1 = {a : aTϑ ≥ 0 ∀ϑ ∈ Θ1}. Their definition of cone order monotonicity
only applies to a test based on a single p-variate statistic. When we look at a
general test based on a sample of n p-variate observations, at least two gener-
alizations are possible; we introduce these in parts (b) and (c) of the following
definition.

Definition 3.3.1. Let C ⊂ R
p be a convex cone.

(a) A function f : R
p → R is cone order monotone with respect to C if

f(x) ≤ f(x + δ) ∀ x ∈ R
p, δ ∈ C.

(b) A function f : (Rp)n → R is cone order monotone in the sample with respect
to C if

f(x1, . . . ,xn) ≤ f(x1 + δ, . . . ,xn + δ) ∀ x1, . . . ,xn ∈ R
p, δ ∈ C.
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(c) A function f : (Rp)n → R is cone order monotone in each observation with
respect to C if

f(x1, . . . ,xn) ≤ f(x1 + δ1, . . . ,xn + δn) ∀ x1, . . . ,xn ∈ R
p,

δ1, . . . , δn ∈ C. △

It is obvious that cone order monotonicity in each observation implies cone
order monotonicity in the sample.

For a discussion of the adequacy of requiring cone order monotonicity, see e. g.
Perlman and Chaudhuri (2004) and Cohen and Sackrowitz (2004).

Cohen and Sackrowitz (1998) give a method for constructing cone order mono-
tone tests from tests for unrestricted alternatives by enlarging the acceptance re-
gion (and then determining the level of the new test). The authors always use the
smallest superset of the acceptance region such that the monotonicity condition
is fulfilled. However, one could also use a larger superset of the same acceptance
region, which would lead to a test with even smaller level. The resulting family
of tests might be more appropriate for certain composite null hypotheses.

3.4 Assumptions on the Underlying Distribu-

tion

For a test to be valid, the distribution of the observations has to belong to a
certain parametric family in the case of parametric tests. For nonparametric
one-sample tests, we typically have to assume some kind of symmetry of the
distribution.

Multivariate distributions can belong to several symmetry classes:

Definition 3.4.1. Let X be a p-variate random vector. The distribution FX of
X is

(a) spherically symmetric (with respect to 0) if, for every orthogonal p×pmatrix

A, X
d
= AX;

(b) in the spherical directions class (with respect to 0) if there exists a random
vector Y with a spherically symmetric distribution (with respect to 0) such

that X
‖X‖

d
= Y

‖Y ‖ ;

(c) elliptically symmetric (with respect to 0) if there exists a nonsingular p× p
matrix B such that the distribution of BX is spherically symmetric;

(d) in the elliptical directions class (with respect to 0) if there exists a random
vector Y with an elliptically symmetric distribution (with respect to 0)

such that X
‖X‖

d
= Y

‖Y ‖ ;
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Figure 3.2: Implications between the different types of symmetry of multivariate
distributions.

(e) diagonally symmetric (with respect to 0) if X
d
= −X;

(f) directionally symmetric (with respect to 0) if X
‖X‖

d
= − X

‖X‖ .

For ϑ ∈ R
p, FX is symmetric (in any of the above senses) with respect to ϑ if

X − ϑ is symmetric (in the same sense) with respect to 0. △
Spherical symmetry trivially implies the spherical directions property (with

Y = X) and elliptical symmetry (with the identity matrix Ip for B). As a con-
sequence of the latter implication, a distribution in the spherical directions class
is also in the elliptical directions class. Elliptical symmetry implies the elliptical
directions property (with Y = X) and diagonal symmetry (with A = −Ip ⇒
BX

d
= −BX

d
= B(−X) ⇒ X

d
= −X). Diagonal symmetry and the ellipti-

cal directions property each again trivially imply directional symmetry. These
relationships and the obvious relationships with the special case of multivariate
normal distributions are illustrated in Figure 3.2, which is an extension of Figure
1 in Randles (2000).

If X has a probability density function fX, we can also characterize some of
the above symmetry properties as follows:

• Spherical symmetry: fX(x) = g(‖x‖) for some g : [0,∞) → [0,∞).

• Elliptical symmetry: fX(x) = g(
√
xTBTBx) |det B|, or, in a more habitual

form, fX(x) = g̃(xTΣ−1x) |det Σ|−
1
2 , with Σ = (BTB)−1.
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• Diagonal symmetry: fX(x) = fX(−x) for all x ∈ R
p.

Diagonal symmetry is often just called symmetry. Further, diagonal symmetry
is also known as “central symmetry” or “reflected symmetry”, and directional
symmetry is also called “angular symmetry”; see e. g. Small (1990), Neuhaus and
Zhu (1999).

The terms used here are mainly based on those used in Hettmansperger and
McKean (1998) and Randles (2000). Randles’s definition of the elliptical direc-
tions class for observations X1, . . . ,Xn is slightly less restrictive: He does not
require the observations to be i. i. d., while we maintain the classical framework
of a test based on an i. i. d. sample. The following definition by Neuhaus and
Zhu (1999) is equivalent to the one given here: The distribution of X is in the
elliptical directions class (with respect to 0) if there exists a matrix B such that
BX

‖BX‖ is uniformly distributed on the unit sphere.
We have introduced the spherical directions class here in analogy to the el-

liptical directions class, and it is easily seen that an equivalent (and simpler)
definition would be that X

‖X‖ is uniformly distributed on the unit sphere.
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Chapter 4

One-Sided Tests from the
Literature

There has been a variety of proposals for tests with “one-sided”, “ordered”, or
“restricted” alternatives in multivariate settings. The emphasis in this survey is
on nonparametric methods.

As the hypotheses for multivariate location tests with restricted alternatives
are often formulated in terms of componentwise comparisons, the following nota-
tion will be useful, given two vectors a = (a1, . . . , ap)

T and b = (b1, . . . , bp)
T:

a ≤ b ⇔ ai ≤ bi, i = 1, . . . , p

a
∃≤ b ⇔ ai ≤ bi, i = 1, . . . , p, and ∃ i : ai < bi

a < b ⇔ ai < bi, i = 1, . . . , p

a ≥ b, a
∃≥ b, and a > b will be used analogously.

4.1 One-Sample Problem

• Brown (1983) describes an “angle test”, a rotation invariant bivariate ana-
logue of a sign test based on the statistic

∑

i

cos(ψi − ϕ),

where ψi is the angle between the positive part of the first coordinate axis
and the i-th observation, and ϕ is the hypothetical direction as in Figure
2.1. Brown uses a normal approximation to the distribution of the test
statistic under the null hypothesis.

• In the introduction to their article, Larocque and Labarre (2004) announce

to propose a test for the one-orthant alternative H1 : ϑ
∃≥ 0. However, the
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conditionally distribution-free sign test proposed actually seems to be more
appropriate for the alternative that at least one component of ϑ is positive,
without any restriction being imposed on the other components (bivariate
case: three-quadrant alternative, Figure 2.2 (d)). The test is based on the
supremum of univariate sign test statistics on projections of the data and
will be presented in more detail in Section 9.2.

• Chinchilli and Sen (1981) give a test of H0 : ϑ = (ϑ1, . . . , ϑp)
T = 0 against

H1 : ϑ 6= 0, ϑi ≥ 0 for i = 1, . . . , a, with a ≤ p fixed, where ϑ is the
parameter vector of a general linear model. They use the union-intersection
principle (see Section 5.3). In the special case a = p = 2, the alternative
hypothesis corresponds to Figure 2.2 (c).

• Silvapulle, Silvapulle, and Basawa (2002) develop a class of adaptive tests for
the null hypothesis ϑ = 0 against the alternative ϑ ∈ Cr{0}, where ϑ ∈ R

p

is a parameter vector and C is a closed convex subset of R
p containing the

origin (or, as a special case, a closed convex positively homogeneous set).
This setting includes the half-plane and one-quadrant alternatives discussed
for the bivariate case (Figure 2.2 (b), (c)). The approach of these authors
is based on asymptotic considerations.

• Minhajuddin, Frawley, Schucany, and Woodward (2006) propose two boot-
strap tests. The first one is for the simple null hypothesis ϑ = 0 against
the alternative that ϑ is in the positive orthant. It is based on the likeli-
hood ratio test statistic used by Perlman (1969) in the multivariate normal
context – see below.

The second test proposed is for the same alternative, but for the composite
null hypothesis consisting of the complement of the positive orthant. Re-
sampling is done after centering the data in such a way that the mean is on
the border of the null parameter region whenever the original mean was in
the positive orthant.

• Parametric procedures: Kudô (1963) considers a p-variate normal popula-
tion with mean ϑ and known covariance matrix. He proposes a likelihood
ratio test for H0 : ϑ = 0 against H1 : ϑ

∃≥ 0. This alternative hypothesis
corresponds to the bivariate situation in Figure 2.2 (c). Perlman (1969) ex-
tends this work to positively homogeneous sets as alternative regions and to
the case of an unknown covariance matrix, giving upper and lower bounds
on the null distribution of the test statistic. A discussion of these tests and
related results is given in Section 4.6 of Robertson, Wright, and Dykstra
(1988).

An approximation to these likelihood ratio tests is given by Tang, Gnecco,
and Geller (1989).
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For a summary of early parametric approaches in the context of (convex)
positively homogeneous sets, see Shapiro (1988).

Akkerboom (1990) proposes to test a simple null hypothesis against a poly-
hedral cone alternative by using a circular cone that approximates the orig-
inal polyhedral cone.

A composite null hypothesis problem is investigated by Sasabuchi (1988).
He considers a p-variate normal random vector with mean ϑ and unknown
covariance matrix. For given p-variate vectors b1, . . . , bk satisfying certain
conditions, he derives the likelihood ratio test of H0 : bT

i ϑ ≥ 0 for all i
with at least one equality against H1 : bT

i ϑ > 0 for all i. In this context,
the above formulation of the null hypothesis is equivalent to H0 : ∃ i :
bT

i ϑ ≤ 0. See also Berger (1989), where two more powerful modifications of
the test are proposed, of which at least one has counterintuitive properties.
Further similar modifications are proposed by McDermott and Wang (2002),
assuming a known covariance matrix.

In order to test if the components have positive means (assuming a known
covariance matrix Σ), Follmann (1996) proposes to use the likelihood ratio

test statistic X2 = nX̄
T
Σ−1X̄, but to reject the null hypothesis if both X2

exceeds the critical value for the level 2α and the sum of the componentwise
means is positive. In the case of an unknown Σ, Hotelling’s T 2 can be used
instead of X2. In the bivariate case, the alternative is similar to the one in
Figure 2.2 (b) (with ϕ1 = −π/4) or Figure 2.1 (with ϕ = π/4).

Cohen and Sackrowitz (1998) give a general procedure to derive tests for
H0 : ϑ = 0 vs. H1 : ϑ ∈ C r {0} (where C is a closed convex posi-
tively homogeneous set) from tests for unrestricted alternatives when ϑ is
the natural parameter of an exponential family. Their procedure enlarges
the acceptance regions of unrestricted tests in order to ensure cone order
monotonicity of the tests – see Section 3.3. The significance levels for these
enlarged acceptance regions are not directly related to those of the unre-
stricted tests and therefore have to be determined from scratch.

Mudholkar, Kost, and Subbaiah (2001) propose a robustified test based on
trimmed means.

Glimm, Srivastava, and Läuter (2002) test H0 : ϑ = 0 against H1 : ϑ
∃≥ 0.

They give the exact null distribution of several versions of a test statistic
under a normal distribution. In order to simplify the calculation of these
test statistics, the convex polyhedral cone resulting from an affine transfor-
mation of the positive orthant is approximated by an orthant. According to
the authors, it can be shown that the null distribution of the test statistics
is valid for data from any elliptically symmetric distributions.

For the problem of showing that at least one component of the parameter is
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positive, Perlman and Wu (2006) propose a test that is more powerful than
the likelihood ratio and union-intersection tests in cases where some of the
components are negative. They also provide a related test for showing that
at least one component is positive while the other components are above
some slightly negative value, as in Figure 2.3 (a) for the bivariate case.

A survey of other, mostly parametric approaches can be found in Sen and
Silvapulle (2002).

4.2 Two-Sample Problem

• Bhattacharyya and Johnson (1970) propose a “layer rank test” for the bi-
variate case. They consider two independent random samples (Z1, . . . ,Zn1)
and (Zn1+1, . . . ,Zn1+n2), where Zi = (Xi, Yi)

T follows a continuous distri-
bution F for i = 1, . . . , n1 and G for i = n1 + 1, . . . , n1 + n2, respectively.
The test problem is

H0 : F ≡ G vs.

H1 : F 6≡ G,F (x, y) ≥ G(x, y), F̄ (x, y) ≤ Ḡ(x, y) for all (x, y),

where F̄ (x, y) := P(X1 ≥ x, Y1 ≥ y). (Under the conditions of H1, a
random vector with cdf F is called strongly stochastically smaller than a
random vector with cdf G.) Thus Bhattacharyya and Johnson discuss a
more general location problem than the shift problem presented in Section
2.1.

The test statistic used is

1

(n1 + n2)2

[
n1

n1 + n2

n1+n2∑

i=n1+1

n1+n2∑

j=1

1(Xi ≥ Xj, Yi ≥ Yj)

− n2

n1 + n2

n1∑

i=1

n1+n2∑

j=1

1(Xi ≥ Xj, Yi ≥ Yj)

]
,

on which a permutation test is performed. It is shown that the statistic
is invariant under the group of bicontinuous transformations g : R

2 → R
2

satisfying
z1 ≥ z2 ⇒ g(z1) ≥ g(z2),

where the inequalities are to be interpreted componentwise, as defined in
the introduction to this chapter.

Johnson and Mehrotra (1972) compare this test statistic to a more elaborate
one, also based on coordinatewise rankings.

Wei and Knuiman (1987) adapt the test to the situation with censored data.
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• Chatterjee and De (1972) present a test of H0 : ϑ = 0 vs. H1 : ϑ
∃≥ 0

in the bivariate case, where ϑ is the location difference between the two
samples (two-sample analogue of Figure 2.2 (c)). Their test statistic is
the supremum of a family of statistics based on the rankings within each
component.

Chatterjee (1984) gives some additional considerations of this approach.

• Boyett and Shuster (1977) consider the problem of testing whether a positive
location difference is present in at least one component (as in Figure 2.2
(d)). They apply a permutation test to the maximum of all componentwise
t statistics (for the case of two independent or dependent samples). A test
based on the minimum of componentwise t statistics is given for the problem
where a positive location difference in all components has to be shown (as
in Figure 2.2 (c)).

• O’Brien (1984) proposes a test for the comparison of two or more multi-
variate samples, where the null hypothesis is that of no difference and the
alternative states that one sample has higher values in all components of
the location parameter. It is not specified which sample should have higher
values. Thus in the bivariate case, the area for the alternative consists of
the first and the third quadrant. This is a problem that does not directly fit
into the concept of sector (or s-simply-connected cone) alternatives – one
would have to consider unions of sectors, which are, of course, still positively
homogeneous. O’Brien calculates the sum of the coordinatewise rankings
for each observation. A usual univariate ANOVA can be applied to these
sums. O’Brien compares this proposal to parametric approaches.

A common framework for O’Brien’s nonparametric test and several para-
metric tests is given by Bregenzer and Lehmacher (1998).

• Park, Na, and Desu (2001) construct a test for H0 : ϑ ≤ 0 vs. H1 : ∃ i :
ϑi > 0 (Figure 2.2 (d)) based on the maximum of (potentially different)
nonparametric test statistics in each component, which is evaluated using
the permutation principle.

• Parametric procedures: Logan (2003) applies the cone order monotonicity
principle to the two-sample case with normal observations. Further para-
metric proposals are mentioned by Tamhane and Logan (2004).

4.3 Multi-Sample Problem

• Dietz (1989) considers a generalization of the Jonckheere–Terpstra test to
the multivariate setting. She proposes a sum of coordinatewise Jonckheere
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statistics (for the alternative that each variable is stochastically increas-
ing in the given order of groups) and a quadratic form of coordinatewise
Jonckheere statistics (for the alternative that each variable is stochastically
ordered, possibly in different directions).

• A multivariate Jonckheere–Terpstra test is also proposed by Tsai and Koziol
(1994) for the alternative of increasing location parameters in the given
order of groups. Their approach is also based on coordinatewise statistics.

• Choi and Marden (1997) propose another generalization of the Jonckheere–
Terpstra statistic for the multivariate case. The statistic is obtained by
replacing sgn(x − y) by the spatial sign (x − y)/ ‖x − y‖, i. e. the unit
vector pointing from one observation to another (see Definition 7.0.1).

• Tsai and Sen (1990) discuss two tests for randomized block designs with
multivariate observations for some rather general alternative. The two tests
are based on coordinatewise intra-block rankings and coordinatewise aligned
rankings over all blocks, respectively.

• Möttönen, Hüsler, and Oja (2003) present a rotation invariant multivariate
analogue of the Page test based on spatial ranks (see Definition 7.0.1).

4.4 Monotone Trend Problem

• Dietz and Killeen (1981) give a test for detecting a monotone trend present
in one or more of p variables observed k times. The direction of the trend
in each component is not specified in advance. Their statistic is based on
rankings within each component and combines within-component statistics
by a quadratic form.

4.5 Combination of Univariate Tests

A generally applicable principle to construct multivariate tests is the combination
of univariate test results, possibly from different tests for each component.

• One approach is to adjust the univariate p-values in order to keep the over-
all significance level when multiple tests are performed. Such a procedure
only implicitly supplies a global test result. A well-known example is the
Bonferroni–Holm procedure (Holm, 1979). Other such procedures are men-
tioned in Reitmeir and Wassmer (1996). An example of a sequential mul-
tiple testing procedure that uses the correlation structure of the individual
test statistics can be found in Wei, Lin, and Weissfeld (1989).
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• Other suggestions combine the individual p-values into one global test – two
famous procedures are those by Tippett (1937) and Fisher (1932), further
methods in the field of meta-analysis can be found in Hedges and Olkin
(1985). For a recent comparison of several well-known methods, see Loughin
(2004).

However, the usual meta-analysis procedures are not suitable for combining
univariate tests into a multivariate test because they are designed for the
combination of independent studies, whereas the tests on different variables
of one data set generally depend on each other.

An example of an approach that combines dependent p-values (with an
application to order-restricted testing problems) can be found in Kost and
McDermott (2002).

We will return to methods for the combination of univariate tests in Chapter 5.

4.6 Related Problems

• The univariate k-sample problem has some connection to the (k−1)-variate
one-sample problem if the location differences of consecutive samples are
considered. One of several examples of tests for this problem can be found
in De (1976).

• Parametric procedures for the univariate monotone trend problem (and
related problems with a separate location parameter for each observation)
can be found in Bartholomew (1961) and Abelson and Tukey (1963).
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Chapter 5

Union-Intersection and
Intersection-Union Tests

Probably the most obvious way to deal with orthant alternatives is the combi-
nation of univariate tests for each component. In this chapter, we present such
methods and the more generally applicable union-intersection and intersection-
union principles.

5.1 Componentwise Procedures for the (2p − 1)-

Orthant Alternative

For the problem of testing

H0 : ϑ ≤ 0 vs.

H1 : ∃ i ∈ {1, . . . , p} : ϑi > 0,

we can use multiple test procedures to combine individual (univariate) tests for

H0i : ϑi ≤ 0 vs.

H1i : ϑi > 0.

(Note that open alternative regions are used here, which are more suitable for
the multiple comparisons approach.) We then reject the global null hypothesis
H0 =

⋂p
i=1H0i if we can reject at least one of the component null hypotheses (at

a suitably corrected level). For both the Bonferroni procedure and the improved
version due to Holm (1979), this condition is equivalent to the smallest p-value
being less than α/p, where α is the desired level of the (global) test. Pocock,
Geller, and Tsiatis (1987) show that even e. g. in the case of a multivariate normal
distribution with known correlations, where better decision rules can be worked
out, the Bonferroni correction is not overly conservative for moderately correlated
components.



5.2 Componentwise Procedures for the One-Orthant Alternative 27

We can derive a more general rule from the statements in Rüger (1978): H0

is rejected if at least k of the p component hypotheses are rejected at the level
kα/p, where k ∈ {1, . . . , p} has to be chosen in advance. The choice of k allows
for some emphasis on the detection either of small effects in many dimensions or
of large effects in few dimensions.

Hommel (1983) modifies Rüger’s procedure: For every k ∈ {1, . . . , p}, he
compares the k-th smallest individual p-value to δk := kα/(p

∑p
i=1 i

−1) and rejects
H0 if any of the ordered p-values is below the corresponding δk. This rejection rule
allows for a detection of small effects in many dimensions as well as large effects
in few dimensions, and in contrast to Rüger’s method, no additional parameter
has to be chosen.

For a class of rejection rules that includes the Bonferroni, Rüger, and Hommel
methods as special cases, see Röhmel and Streitberg (1987).

The method for component hypotheses that are ordered a priori with respect
to their importance (Maurer, Hothorn, and Lehmacher, 1995; see Section 5.2)
is not appropriate here; its application would consist in a univariate test in the
most important component only.

5.2 Componentwise Procedures for the One-

Orthant Alternative

Using an open alternative region again, we can formulate the problem as

H0 : ∃ i ∈ {1, . . . , p} : ϑi ≤ 0 vs.

H1 : ϑ > 0.

Obviously, we can again translate this into a multiple test problem with

H0i : ϑi ≤ 0 vs.

H1i : ϑi > 0,

but now the rejection of the original null hypothesis corresponds to the rejection of
all partial null hypotheses. Therefore, the Bonferroni, Holm, Rüger, and Hommel
approaches generally lead to much too conservative tests.

In fact, such a correction is not necessary at all: Maurer, Hothorn, and
Lehmacher (1995) show that the global level α is respected in a multiple compar-
isons problem if the partial hypotheses are tested sequentially, each at the level α,
where the hypotheses are ordered a priori with respect to their importance, and
a hypothesis is only tested if all preceding hypotheses have been rejected. (This
is a special case of the closed testing procedure described by Marcus, Peritz, and
Gabriel, 1976.) In the case of the one-orthant alternative, the rejection of all p
component hypotheses is necessary. Therefore, the a priori ordering of the hy-
potheses is unimportant – each component hypothesis needs to be rejected at
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the level α in order to reject the original H0. (This is also a special case of the
method by Rüger, 1978, with k = p.) This method is still conservative, i. e. its
true level will be strictly less than α except for degenerate examples.

The principle of rejecting the global null hypothesis if and only if each com-
ponent hypothesis can be rejected is known as the min test in the literature (e. g.
Sen and Silvapulle, 2002): If the same test statistic (tending to result in larger
values for larger ϑi’s) is calculated for each component, the minimum of them
can be compared to the 1 − α quantile of the univariate test statistic used.

More efficient tests based on componentwise statistics might be obtained by
resampling methods; see e. g. Westfall and Young (1993).

5.3 Union-Intersection Tests

We can apply ideas similar to those presented in Section 5.1 in a more general
context: If a null hypothesis can be written as H0 =

⋂
i∈I H0i, we can use the

so-called union-intersection (UI) principle to construct a test bases on this repre-
sentation of H0. This test rejects H0 if any of the individual hypotheses H0i can
be rejected using a suitable (e. g. univariate) test, i. e. the rejection region of the
UI test for H0 is the union of the individual rejection regions for the H0i’s; see
e. g. Mardia, Kent, and Bibby (1979), pp. 129ff. This principle was formulated
by Roy (1953).

The level α of the UI test for H0 is at least the level α∗ of the tests for each
H0i, but may be much larger than α∗, such that a suitable choice of α∗ has to be
made. For a finite index set I, the multiple test procedures mentioned in Section
5.1 can be used again.

5.4 Intersection-Union Tests

An analogous procedure to the UI test has been proposed by Berger (1982) and
Berger and Sinclair (1984) for the case that H0 =

⋃
i∈I H0i. The rejection region

forH0 of the intersection-union (IU) test is the intersection of the rejection regions
of the tests for H0i.

Again, the level α of the IU test is usually not equal to the level α∗ of the
individual tests. However, α∗ is an upper bound for α, and in many cases, α∗

cannot be chosen higher than the target level α unless restrictive assumptions,
e. g. on the covariance structure, are made. Therefore, α∗ = α is often chosen,
usually yielding a slightly conservative test.

Tamhane and Logan (2004) combine the UI and the IU approach into a test
for non-inferiority in all components of a multivariate parameter and superiority
in at least one component.
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Chapter 6

Binomial Tests

In this chapter, we discuss several simple one-sample location test statistics that
are based on point counts. From these statistics, we can construct tests using
binomial null distributions.

General Assumption
In this and the following chapters, unless otherwise indicated, observa-
tions will be assumed to come from an absolutely continuous distribution
on R

p that is (at least) directionally symmetric with respect to ϑ.

6.1 Half-Space

Let C be a closed half-space in R
p including 0 in its boundary. When testing

H0 : ϑ ∈ {0}∪(Rp
rC) vs. H1 : ϑ ∈ Cr{0}, we can obviously count the number

of points in C to get a sensible statistic. If n points from a directionally symmetric
distribution (with center 0) are observed, the probability for each point to fall
into C is 0.5, and the number of points in C,

∑n
i=1 1(X i ∈ C), has a Bin(n, 0.5)

distribution. Therefore, we will reject the null hypothesis if the number of points
in C exceeds the (1 − α)-quantile of the binomial distribution with the given
parameters, where α is the desired level of the test.

For every ϑ ∈ R
p
rC, the probability for a point to fall into C is less than or

equal to 0.5. Thus, the specified level of the test will be respected for the whole
set constituting the null hypothesis, and not only for ϑ = 0.

This test is affine invariant: If a point x is in C, T (x) will also be in T (C)
under any affine transformation T .

6.2 Cone/Opposite Cone

If C is no longer a half-space, but some general closed convex cone, the number
of points in C still follows a binomial distribution, but the “success probability”
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under ϑ = 0, P0(X i ∈ C), is no longer known. For distributions in the spherical
directions class, we could use the proportion of the unit sphere included in the
cone, but for more general distributions, this proportion is meaningless.

One possibility is to compare the number N1 =
∑n

i=1 1(X i ∈ C) of points in
C to the number N2 of points in the opposite cone −C = {x ∈ R

p : −x ∈ C}:
If ϑ = 0, conditional on the number M = N1 + N2 =

∑n
i=1 1(X i ∈ C ∪ −C) of

points in the union of both cones, N1 has a known binomial distribution again,
now with parameters M and 0.5. (For the statistic N1 to be meaningful, we
should assume the distribution of the X i’s to be unimodal.)

For the same reason as in the previous section, this test is affine invariant.
Further, the test is cone order monotone in each observation (and therefore also
in the sample) with respect to C: Let n1 and n2 be the observed values of N1

and N2, respectively. By addition of a vector from C, points can be moved out
of −C and/or into C, but not in the opposite direction, i. e. n1 can increase by
1 and/or n2 can decrease by 1. In every possible case, P(N1 ≥ n1|M = n1 + n2)
remains unchanged or decreases; for the non-trivial cases, this can be seen using
Theorem B.2.1.

The obvious drawback of this method is that some of the points are not
considered at all, and if the true location parameter lies within R

p
r (C ∪ −C),

the result will be quite arbitrary. Hence, the test based on this statistic will not
be suitable for the (full) composite null hypothesis case, H0 : ϑ ∈ {0}∪ (Rp

rC)
vs. H1 : ϑ ∈ C r {0}, but only for the simple null hypothesis H0 : ϑ = 0 or an
intermediate composite null hypothesis, such as H0 : ϑ ∈ −C.

6.3 Estimated Cone Probability

Another approach to deal with the unknown parameter P0(X i ∈ C) is to estimate
it from the given data. This can be done in the following way:

1. Compute some estimate ϑ̂ for the location parameter, e. g. a multivariate
median.

2. As an estimate for P0(X i ∈ C), take the number of the centered observa-
tions X i − ϑ̂ that are in C, divided by n.

3. Use n and this estimated probability as the binomial parameters to test
whether the number of (original) observations X i in C is significantly too
high.

(Modifications: To take advantage from the assumption of directional symmetry,
we can also use the combined sample of the centered observations and their re-
flections and divide by 2n in step 2, which leads to more possible values for the
estimate of the cone probability and therefore reduces discreteness problems. As
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a further alternative, we can use the combined sample of the original observations
and their reflections for step 2, such that we can eliminate step 1, which leads to
a test resembling the cone/opposite cone test.)

The invariance properties of this method depend on the equivariance proper-
ties of the estimate ϑ̂.

Even though this method uses information from all points, it is still not suit-
able for the general composite null hypothesis case: Imagine the bivariate case
with H0 : ϑ ∈ {0} ∪ (R2

r C) vs. H1 : ϑ ∈ C r {0}, where C is the closed first
quadrant, and with the uniform distribution on the unit circular disk around ϑ.
If the true ϑ is (−ε, 1)T, then Pϑ(X i ∈ C) approaches 0.5 for ε → 0. But the
estimate for P0(X i ∈ C) will be around 0.25, and so H0 will be rejected too
often, i. e. the specified level for the test will not be respected.

Further, the usage of an estimated cone probability in the test makes it quite
difficult to calculate exact rejection probabilities.
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Chapter 7

Spatial Sign and Rank Tests

Möttönen and Oja (1995) use the concept of spatial signs and spatial ranks to
formulate rotation invariant multivariate analogues of the one- and two-sample
sign tests, the Wilcoxon signed rank test, and the Wilcoxon rank sum test for
unrestricted alternatives. We will focus on the spatial sign test for the one-
sample problem, which we present in Section 7.1. In the following two sections,
we propose modifications of this test statistic for one-sided alternatives. At the
end of the chapter, we give some remarks concerning analogous modifications of
the spatial signed rank test.

We use the following notation throughout this chapter:

Definition 7.0.1. Let x,x1, . . . ,xn be p-variate vectors.

(a) The spatial sign of x is

sgn x =

{
x

‖x‖ ‖x‖ > 0,

0 ‖x‖ = 0.

(b) The spatial rank of x with respect to x1, . . . ,xn is

rnk(x|x1, . . . ,xn) =
1

n

n∑

i=1

sgn(x − xi). △

The definition for the spatial rank given here is the one used in more recent
papers (e. g. Möttönen, Oja, and Tienari, 1997), while in Möttönen and Oja
(1995), −n rnk(x|x1, . . . ,xn) is called the spatial rank.

7.1 Spatial Sign Test for an Unrestricted Alter-

native

Möttönen and Oja (1995) propose a rotation invariant sign test for H0 : ϑ = 0
vs. H1 : ϑ 6= 0, where ϑ is the location parameter of a diagonally symmetric,
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absolutely continuous distribution F . Let X1, . . . ,Xn be a random sample from
F . The test is based on the fact that

√
n rnk(0|X1, . . . ,Xn) has an Np(0,B1)

limiting distribution under the null hypothesis, where B1 = E0[sgn X1(sgn X1)
T].

The covariance matrix B1 can be estimated consistently under H0 by B̂1,n =
n−1

∑n
i=1 sgn X i(sgn X i)

T, and

n (rnk(0|X1, . . . ,Xn))TB̂−1
1,n rnk(0|X1, . . . ,Xn)

asymptotically has a chi-square distribution with p degrees of freedom.

7.2 Modification for a Direction Alternative

Geometrically, we can interpret (rnk(0|X1, . . . ,Xn))TB̂−1
1,n rnk(0|X1, . . . ,Xn) as

the L2 norm of the spatial rank of 0 after an affine transformation T : x 7→
B̂

−1/2
1,n x. (B̂1,n is symmetric and nonnegative definite; if it is positive definite, B̂−1

1,n

exists, is also symmetric and positive definite and has a symmetric square root –
see e. g. Harville, 1997, Section 21.9.)

Instead of the norm, we can consider a projection onto a specified direc-
tion, which leads us to a test statistic for a restricted alternative: Let a vector
v 6= 0 indicate the assumed direction for the deviation of the location from
0 under the alternative. The projection that we need is the scalar product of
T (rnk(0|X1, . . . ,Xn)) and a unit vector in the direction of T (v):

(
sgn

(
B̂

−1/2
1,n v

))T

B̂
−1/2
1,n rnk(0|X1, . . . ,Xn)

As a test statistic for the direction alternative, we use

Ssgn,d(X1, . . . ,Xn; v) = −
√
n
(
sgn

(
B̂

−1/2
1,n v

))T

B̂
−1/2
1,n rnk(0|X1, . . . ,Xn),

which tends to take positive values if ϑ lies in the direction of v. More precisely,
the alternative is H1 : vT[E(sgn X i(sgn X i)

T)]−1ϑ̃ > 0, where ϑ̃ is the expected
spatial sign of the observations; i. e., under H1, ϑ̃ lies within the half-space given
by v and the scalar product based on [E(sgnX i(sgn X i)

T)]−1. Möttönen and Oja
(1995) claim that − rnk(0|X1, . . . ,Xn) points “towards the mass of the sample”;
however, the exact meaning of this statement is uncertain – at least, examples
can be constructed where ϑ̃ = E(sgn X1) = E[− rnk(0|X1, . . . ,Xn)] and the
symmetry point ϑ of the distribution of X1 are nearly orthogonal to each other.
See Appendix A.2 for details.

A related approach (for the bivariate case) is also used by Brown (1983), but
the statistic considered there is the sum of scalar products of the (untransformed)
spatial signs of the observations and a (untransformed) unit vector in the specified
direction.
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In order to determine the limiting distribution of Ssgn,d(X1, . . . ,Xn; v) for
n→ ∞ under the simple null hypothesis H0 : ϑ̃ = 0 (which is implied by ϑ = 0;
see Appendix A.1), we establish a more general lemma first.

Lemma 7.2.1. Let (Xn)n∈N be a sequence of random vectors in R
p, Xn

d→
Np(0,Σ) (n → ∞), Σ positive definite, Σn

p→ Σ (n → ∞), Σn positive definite
w. p. 1 for sufficiently large n, v ∈ R

p
r {0} a fixed vector. Then

(
sgn

(
Σ−1/2

n v
))T

Σ−1/2
n Xn

d→ N(0, 1) (n→ ∞)

(the limit being well defined w. p. 1).

Proof. W. p. 1, there exists n0 ∈ N such that every Σn with n ≥ n0 is positive
definite (and therefore has an inverse Σ−1

n ). Σn
p→ Σ implies Σ−1

n

p→ Σ−1 by The-
orem B.1.2 (b) because A 7→ A−1 is continuous for positive definite A. Therefore,

by Theorem B.1.4 (c), Σ
−1/2
n Xn

d→ Np(0, Ip).
Repeated application of Theorem B.1.2 (a) yields

sgn
(
Σ−1/2

n v
) d→ sgn

(
Σ−1/2v

)
.

Because sgn
(
Σ−1/2v

)
is constant, we can apply Theorem B.1.1 in order to obtain

(
Σ−1/2

n Xn, sgn
(
Σ−1/2

n v
)) d→

(
Zp, sgn

(
Σ−1/2v

))
,

where Zp ∼ Np(0, Ip).
Finally, Theorem B.1.2 (a) yields

(
sgn

(
Σ−1/2

n v
))T

Σ−1/2
n Xn

d→
(
sgn

(
Σ−1/2v

))T
Zp.

But the projection of an Np(0, Ip) random vector onto any direction is N(0, 1).

For v = (1, . . . , 1)T, O’Brien (1984) as well as Pocock, Geller, and Tsiatis
(1987) use this type of asymptotically standard normal statistics.

Theorem 7.2.2. Under H0, there exists w. p. 1 a number n0 ∈ N such that
Ssgn,d(X1, . . . ,Xn; v) is well defined for all n ≥ n0, and it converges in distribu-
tion to standard normal for n→ ∞.

Proof. It has already been mentioned that the limiting distribution of
√
n rnk(0|

X1, . . . ,Xn) is Np(0,B1) (central limit theorem). The distribution of the X i’s
is absolutely continuous and therefore genuinely p-variate, and so is the dis-
tribution of the sgn X i’s. Therefore, B1 is positive definite. Further, B̂1,n =
n−1

∑n
i=1 sgn X i(sgn X i)

T is a consistent estimate for B1 under H0 and positive
definite w. p. 1 for n > p. Therefore, Lemma 7.2.1 is applicable, which completes
the proof.
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The directional version of the spatial sign test shares the invariance property
of the unrestricted version by Möttönen and Oja (1995):

Theorem 7.2.3. Ssgn,d(X1, . . . ,Xn; v) is orthogonally invariant.

Proof. Let A be an orthogonal p × p matrix, i. e. ATA = AAT = Ip. Recalling
the respective definitions, we can easily see that

sgn(Ax) = A sgn x,

rnk(0|Ax1, . . . ,Axn) = A rnk(0|x1, . . . ,xn),

B̂∗
1,n = AB̂1,nAT,

where B̂∗
1,n = n−1

∑n
i=1 sgn(AX i)(sgn(AX i))

T. Further,

B̂
∗ −1/2
1,n = AB̂

−1/2
1,n AT,

and, by combination of these equalities,

Ssgn,d(AX1, . . . ,AXn; Av)

= −
√
n
(
sgn

(
B̂

∗ −1/2
1,n Av

))T

B̂
∗ −1/2
1,n rnk(0|AX1, . . . ,AXn)

= −
√
n
(
sgn

(
AB̂

−1/2
1,n ATAv

))T

AB̂
−1/2
1,n ATA rnk(0|X1, . . . ,Xn)

= −
√
n
(
A sgn

(
B̂

−1/2
1,n v

))T

AB̂
−1/2
1,n rnk(0|X1, . . . ,Xn)

= −
√
n
(
sgn

(
B̂

−1/2
1,n v

))T

ATAB̂
−1/2
1,n rnk(0|X1, . . . ,Xn)

= Ssgn,d(X1, . . . ,Xn; v),

which is the desired invariance property.

7.3 Adaptation to a Sector Alternative

Cone alternatives are more important than direction alternatives in many appli-
cations, such that it would be desirable to extend the spatial sign test to this more
general problem. As this is the simplest case, we only treat sector alternatives
for the bivariate case here.

A convex sector can be described as the intersection of two half-planes. There-
fore, again with ϑ̃ = E(sgn X1), we construct a test for the simple H0 : ϑ̃ = 0 vs.
H1 : ϑ̃ ∈ Θ1 (Θ1 being a sector with an angle strictly less than π) from tests for
the alternative that the expected spatial sign lies within some half-plane. (Such
half-plane alternatives are related to direction alternatives, but it should be noted
that the directional version of the spatial sign test described above does not test
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Figure 7.1: (a) Sector alternative in the original coordinate system; (b) Trans-

formed sector alternative: ũi,n = B̂
−1/2
1,n ui.

whether the expected spatial sign lies within an explicitly given half-plane; in-
stead, the hypothetical direction v is given, which is transformed using B̂

−1/2
1,n ,

and in this transformed space, a half-plane can be associated with the direction
B̂

−1/2
1,n v. This does not lead to the same result as if we transformed the half-space

given by v.)
We use the following notation (cf. Figure 7.1): The sector Θ1 is given as the

area between the two angles ϕ1 < ϕ2, corresponding to unit vectors u1 and u2.
These vectors are transformed to ũi,n = B̂

−1/2
1,n ui (not necessarily of length 1;

with angles ϕ̃i,n), such that ũ1,n and ũ2,n indicate the borders of the transformed
sector. Unit vectors w1,n and w2,n are defined such that they are orthogonal on
the borders and pointing towards the transformed sector, i. e. wT

i,nũi,n = 0 and
wT

i,nũj,n > 0 for i 6= j.

If −√
nB̂

−1/2
1,n rnk(0|X1, . . . ,Xn) lies within the transformed sector, we con-

sider this as an indication that the location parameter ϑ lies within the given
sector. Hence, both projections (on the directions given by w1,n and w2,n) of
this transformed spatial rank should be (substantially) greater than 0 in order to
reject H0. The minimum of these two projections appears to be a sensible test
statistic:

Ssgn,s(X1, . . . ,Xn;ϕ1, ϕ2) = min
(
−

√
nwT

1,nB̂
−1/2
1,n rnk(0|X1, . . . ,Xn),

−
√
nwT

2,nB̂
−1/2
1,n rnk(0|X1, . . . ,Xn)

)

Even though we are looking at a simple H0, the use of this minimum of two test
statistics can be interpreted as an intersection-union test.

Theorem 7.3.1. Let ϕ2 −ϕ1 < π, w1,n,w2,n be defined as above, and let w1,w2

be defined analogously, but based on B1 instead of B̂1,n.



7.3 Adaptation to a Sector Alternative 37

Under H0, there exists w. p. 1 an n0 ∈ N such that Ssgn,s(X1, . . . ,Xn;ϕ1, ϕ2)
is well defined for all n ≥ n0, and its limiting density function for n→ ∞ is

fSsgn,s(y) = 2φ(y)

[
1 − Φ

(
y

√
1 − ρ

1 + ρ

)]
,

where ρ = wT
1 w2 and φ,Φ are the standard normal density function and cumu-

lative distribution function, respectively.

Proof. For the existence w. p. 1 of n0 with the stated property, see the proof of
Theorem 7.2.2. From the proofs of Lemma 7.2.1 and Theorem 7.2.2, we know that
−√

nB̂
−1/2
1,n rnk(0|X1, . . . ,Xn) has an N2(0, I2) limiting distribution. B̂1,n

p→ B1

implies, by Theorem B.1.2 (a), that wi,n
d→ wi. Theorem B.1.1 ensures that

(
−
√
nB̂

−1/2
1,n rnk(0|X1, . . . ,Xn),w1,n,w2,n

)
d→ (Z2,w1,w2)

with Z2 ∼ N2(0, I2), and according to Theorem B.1.2 (a),

Ssgn,s(X1, . . . ,Xn;ϕ1, ϕ2)
d→ min

(
wT

1 Z2,w
T
2 Z2

)
.

Theorem B.3.3 yields the desired statement (note that wT
1 w2 is the cosine of the

angle of the transformed sector, ϕ̃2 − ϕ̃1).

Theorem 7.3.2. Ssgn,s(X1, . . . ,Xn;ϕ1, ϕ2) is orthogonally invariant.

Proof. The proof of rotation invariance is analogous to the one of Theorem 7.2.3.
For the invariance under some reflection, e. g. (x1, x2)

T 7→ (x1,−x2)
T, the proof is

similar, but we have to relabel the angles specifying the sector in order to maintain
the condition ϕ1 < ϕ2. As soon as invariance under every rotation and under
some reflection is assured, the proof of orthogonal invariance is complete.

Theorem 7.3.3. Under H0, Ssgn,s(X1, . . . ,Xn;ϕ1, ϕ2) is distribution-free for
distributions of the X i’s belonging to the spherical directions class.

Proof. For X i’s coming from a distribution with spherical directions, sgnX i is
uniformly distributed on the unit circle. Since the influence of X i on Ssgn,s is
only through sgnX i, the statement follows immediately.

According to Theorem 7.3.3, critical values for a test based on Ssgn,s could
be tabulated for the class of distributions with spherical directions, depending
only on the sample size and the angle of the sector. For the much more general
class of directionally symmetric distributions, a permutation test could also be
used to deal with small sample situations: Multiplication of an arbitrary subset of
observations by −1 results in the multiplication by −1 of the corresponding spatial
signs, but does not affect B̂1,n, such that the most complex parts of the calculation
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need only be done once. (Both Theorem 7.3.3 and the remark concerning the
permutation test apply to Ssgn,d as well.)

It is not difficult to find examples showing that Ssgn,s(X1, . . . ,Xn;ϕ1, ϕ2) and
the tests based on it are not cone order monotone in the sample with respect to
Θ1 or Θ∗

1 (and therefore not cone order monotone in each observation either).

Tests based on Ssgn,s(X1, . . . ,Xn;ϕ1, ϕ2) are suitable for convex sectors only.
However, for non-convex sectors (i. e. the case ϕ2 − ϕ1 > π), we can construct a
similar statistic using the maximum of two projections instead of the minimum,
i. e. based on the union-intersection principle.

Both tests (based on the minimum or the maximum of projections) can be
generalized to the multivariate case, where the alternative regions are convex
polyhedral cones or their complements, respectively. While the exact distribution
of the test statistic will be difficult to derive, the permutation test approach
outlined above can be used.

7.4 Spatial Signed Rank Test

In a completely analogous way, we can adapt the spatial signed rank test by
Möttönen and Oja (1995) to one-sided alternatives.

For the unrestricted versions, Möttönen, Oja, and Tienari (1997) give the
asymptotic efficiencies of spatial sign and signed rank tests. As in the univariate
case, the signed rank test is found to be more efficient for normal or moderately
heavy-tailed data in low dimensions, but the difference diminishes as the dimen-
sion increases, and for heavy-tailed, high-dimensional data, the sign test is even
more efficient than the signed rank test.

Similar properties can be expected for the directional versions. Because of
the substantially higher computational complexity of the signed rank methods,
we do not consider their adaptation to restricted alternatives in detail here.
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Chapter 8

Tests Based on the Procedure by
Randles (2000)

8.1 Sign Test for an Unrestricted Alternative

Randles (2000) describes an affine invariant multivariate sign test for H0 : ϑ = 0
vs. H1 : ϑ 6= 0, ϑ ∈ R

p being the location parameter of a directionally symmetric,
absolutely continuous distribution F . He uses a transformation x 7→ Âdx, where
Âd is the upper triangular p × p matrix with positive diagonal elements, with a
1 as the upper-left element, and such that

1

n

n∑

i=1

(
ÂdX i

‖ÂdX i‖

)(
ÂdX i

‖ÂdX i‖

)T

=
1

p
Ip.

The matrix Âd is based on a “most robust” estimate of scatter for elliptically
symmetric distributions proposed by Tyler (1987).

With V i = ÂdX i/‖ÂdX i‖ and V̄ = n−1
∑n

i=1 V i, Randles uses the test
statistic

Qd = npV̄
T
V̄ .

Asymptotically for n → ∞, Qd has a chi-square distribution with p degrees of
freedom if ϑ = 0. The computational complexity of a conditional test for small
samples is reduced by the fact that Âd is invariant under sign changes of any
subset of the observations X i. (Note that the “d” in Qd comes from Randles’s
paper and indicates the fact that only the directions of the observations from the
origin are taken into account, while we normally use a “d” subscript to denote a
test for a direction alternative.)

In the spatial sign and rank notation from the preceding chapter, the condition
on Âd can also be written as

1

n

n∑

i=1

sgn
(
ÂdX i

)(
sgn

(
ÂdX i

))T

=
1

p
Ip,
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and the test statistic is

Qd = np
(
rnk

(
0
∣∣∣ÂdX1, . . . , ÂdXn

))T

rnk
(
0
∣∣∣ÂdX1, . . . , ÂdXn

)
.

The essential difference to the spatial sign test by Möttönen and Oja (1995)
from Section 7.1 is that Randles first standardizes the observations, then calcu-
lates the spatial rank of 0 with respect to these transformed observations and
takes its norm, whereas Möttönen and Oja first calculate the spatial rank of 0,
then standardize it and take the norm. This reversed order of steps is the reason
for the different invariance properties.

8.2 Modification for a Direction Alternative

Like the spatial sign test in Chapter 7, Randles’s test statistic involves an affine
transformation. Therefore, for a directional version, we also need to transform
the hypothetical direction. Once again, we replace the quadratic form by a scalar
product:

SRandles,d(X1, . . . ,Xn; v) =
√
np

(
Âdv

‖Âdv‖

)T

V̄ ,

where V̄ is the mean of the transformed observations V i = ÂdX i/‖ÂdX i‖.
In spatial sign and rank notation:

SRandles,d(X1, . . . ,Xn; v) = −√
np
(
sgn

(
Âdv

))T

rnk
(
0
∣∣∣ÂdX1, . . . ÂdXn

)
.

As for the test statistic for the unrestricted alternative, the major differ-
ence to Ssgn,d(X1, . . . ,Xn; v) from the preceding chapter is the reversed order
of the standardization and the application of the spatial rank. While we have
used the square root of a covariance matrix estimate (for the spatial signs) for
Ssgn,d(X1, . . . ,Xn; v), we maintain Âd from Randles’s proposal here, which is
(up to a constant) the Cholesky factorization of a scatter matrix estimate (for
the original data). We could also use the square root of this estimate instead.

It is clear that we cannot specify the hypotheses being tested in terms of
the Euclidean scalar product in the original data space (i. e. H1 : vTϑ > 0)
when we desire affine invariance of a test – orthogonality of directions is not
preserved under affine transformations. We therefore have to use some data-
based “orthogonality criterion”. The alternative that we test here is of the form
H1 : (A0v)T E[sgn(A0X1)] > 0, where A0 is the population analogue to Âd, i. e.
the upper triangular matrix with positive diagonal elements, a 1 as the upper-left
element, and such that

E

[(
A0X

‖A0X‖

)(
A0X

‖A0X‖

)T
]

=
1

p
Ip.
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The corresponding simple null hypothesis is H0 : E[sgn(A0X1)] = 0, which is
implied by ϑ = 0 (as in Section 7.2).

Note that with h(x,y) = [E(sgn(A0x))]T E(sgn(A0y)), we can write H1 as
h(v,X1) > 0. This definition of h enforces symmetry, but h is neither bilinear
nor positive definite and therefore not a scalar product (in x and y). However, we
can interpret h as the Euclidean scalar product in the space of expected spatial
signs of the transformed data.

Theorem 8.2.1. SRandles,d(X1, . . . ,Xn; v) is affine invariant for n > p(p− 1).

Proof. Let D be a nonsingular p× p matrix, Y i = DX i, and let Âd,X and Âd,Y

denote the scatter matrices estimated from the X i’s and Y i’s, respectively. Anal-
ogously, we use subscripts X and Y to indicate the observations that underlie
the calculation of V i and V̄ .

Randles shows that the matrix Θ = c
−1/2
0 Âd,Y DÂ−1

d,X (where c0 > 0 depends
on D and the observations X i) is orthogonal for n > p(p− 1), and that V i,Y =
ΘV i,X. Therefore (using the definition of Θ for the second equality),

SRandles,d(DX1, . . . ,DXn; Dv) =
√
np

(
Âd,Y Dv

‖Âd,Y Dv‖

)T

V̄ Y

=
√
np

(
c
1/2
0 ΘÂd,Xv

‖c1/2
0 ΘÂd,Xv‖

)T
1

n

n∑

i=1

V i,Y

=
√
np

(
ΘÂd,Xv

‖Âd,Xv‖

)T
1

n

n∑

i=1

ΘV i,X

=
√
np

(
Âd,Xv

‖Âd,Xv‖

)T

ΘTΘV̄ X

= SRandles,d(X1, . . . ,Xn; v).

Because the test for a null location parameter ϑ0 6= 0 is defined by testing for a
null value of 0 based on the observations X i − ϑ0 (see Section 2.4), invariance
under translations is obvious, which completes the proof of affine invariance.

Theorem 8.2.2. Under H0 and for a directionally symmetric distribution of the
X i’s, the limiting distribution of SRandles,d(X1, . . . ,Xn; v) for n→ ∞ is standard
normal.

Proof. We can take the cumbersome part of the proof from that of Theorem 1 in
Randles (2000): Define U i = A0X i/‖A0X i‖. According to Randles, E[U i] = 0,√
n(Âd − A0) = Op(1) (n → ∞), and therefore, by Lemma A.3 from Randles

(2000),
√
n(V̄ − Ū )

p→ 0.
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Further, the central limit theorem yields
√
nŪ

d→ Np(0,E[U iU
T
i ]), which is

Np(0,
1
p
Ip) by the definition of A0. Combining this with Randles’s result from

above, we obtain
√
npV̄

d→ Np(0, Ip) by Theorem B.1.3.
By complete analogy to the proof of Lemma 7.2.1, SRandles,d(X1, . . . ,Xn; v) =

(sgn(Âdv))T√npV̄ d→ (sgn(A0v))TZp, with Zp ∼ Np(0, Ip). This projection has
an N(0, 1) distribution.

8.3 Adaptation to a Sector Alternative

For p = 2, as in the case of the spatial sign test by Möttönen and Oja, we can ob-
tain a version for a convex sector alternative again by the consideration of the min-
imum of two projections of

√
npV̄ =

√
2nV̄ . The simple null hypothesis is still

H0 : E[sgn(A0X1)] = 0, and the alternative is now H1 : E[sgn(A0X1)] ∈ A0Θ1.
As above, this is in terms of the expected spatial sign of the transformed obser-
vations, now conjectured to lie in the transformed convex sector. An equivalent
formulation of the alternative is

H1 : E

[
X1

‖A0X1‖

]
= E

[
sgn X1

‖X1‖
‖A0X1‖

]
∈ Θ1,

which refers to the spatial signs, but with a weight reflecting the affine trans-
formation necessary to standardize the covariance structure of the spatial signs.
The effect of this factor is that more probable directions receive more weight (as
long as the underlying distribution is in the elliptical directions class).

We use a notation similar to the one in Section 7.3: The sector Θ1 (with an
angle strictly less than π) is given by the angles ϕ1 and ϕ2, corresponding to unit

vectors u1 and u2. The transformation matrix is now Âd (based on a sample of

size n), and therefore the direction vectors are transformed to ũi,n = Âdui. Again,
we define unit vectors wi,n that are orthogonal on ũi,n and pointing towards the

sector. The theoretical analogues are wi, defined with A0 instead of Âd.
We can now define the test statistic as

SRandles,s(X1, . . . ,Xn;ϕ1, ϕ2) = min
(
−
√

2nwT
1,nV̄ ,−

√
2nwT

2,nV̄
)
.

Theorem 8.3.1. With the notation from above, assuming ϕ2−ϕ1 < π, under H0

and for a directionally symmetric distribution of the X i’s, the limiting density
function of SRandles,s(X1, . . . ,Xn;ϕ1, ϕ2) for n→ ∞ is

fSRandles,s
(y) = 2φ(y)

[
1 − Φ

(
y

√
1 − ρ

1 + ρ

)]
,

where ρ = wT
1 w2 and φ,Φ are the standard normal density function and cumu-

lative distribution function, respectively.
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Proof. Note that
√

2nV̄ has an N2(0, I2) limiting distribution and that Âd
p→ A0

(n → ∞) – see the proof of Theorem 8.2.2. Thus, we can complete the proof
analogously to the one of Theorem 7.3.1.

Theorem 8.3.2. SRandles,s(X1, . . . ,Xn;ϕ1, ϕ2) is affine invariant for n >
p(p− 1).

Proof. For a transformation with a nonsingular p × p matrix D, we use the no-
tation from the proof of Theorem 8.2.1. Further, in the space of transformed
observations, we use a superscript D for the angles ϕi and the corresponding
vectors ui, ũi,n and wi,n.

ũD
i,n = Âd,Y uD

i = Âd,Y sgn(Dui) = aiÂd,Y Dui = aic
1/2
0 ΘÂd,Xui = aic

1/2
0 Θũi,n,

where ai is a positive constant. Therefore, wD
i,n = Θwi,n. Using V̄ Y = ΘV̄ X,

SRandles,s(DX1, . . . ,DXn;ϕD
1 , ϕ

D
2 )

= min
(
−
√

2n
(
wD

1,n

)T
V̄ Y ,−

√
2n
(
wD

2,n

)T
V̄ Y

)

= min
(
−
√

2nwT
1,nΘTΘV̄ X,−

√
2nwT

2,nΘTΘV̄ X

)

= SRandles,s(X1, . . . ,Xn;ϕ1, ϕ2)

because of the orthogonality of Θ.
Translation invariance is again given by definition (see Section 2.4).

Theorem 8.3.3. Under H0, SRandles,s(X1, . . . ,Xn;ϕ1, ϕ2) is distribution-free for
distributions of the X i’s belonging to the elliptical directions class.

Proof. We can write the X i’s coming from a distribution with elliptical directions
as X i = RiB

−1Y i, where Y i is uniformly distributed on the unit circle, B is a
nonsingular matrix and the Ri’s are (random or fixed) positive scalars. These
scalars have no influence on the test statistic. Further, we have shown in Theorem
8.3.2 that the test statistic is affine invariant, such that its distribution does not
depend on B.

Theorem 8.3.3 allows for the tabulation of critical values for the test based
on SRandles,s when the X i’s are from a directionally symmetric distribution. A
permutation test is also possible for directionally symmetric distributions; note
that Âd does not change if some of the observations are multiplied by −1. (Similar
observations were made by Randles, 2000, for his unrestricted test based on Qd,
and they also apply to SRandles,d).

Examples can easily be found that show that SRandles,s(X1, . . . ,Xn;ϕ1, ϕ2)
and the tests based on it are not cone order monotone in the sample with respect
to Θ1 or Θ∗

1 (and therefore not cone order monotone in each observation either).
Regarding generalizations to the multivariate case, the same remarks hold as

those made for the spatial sign test at the end of Section 7.3.
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Chapter 9

“Hodges-Type” Tests

9.1 Hodges’ Bivariate Sign Test

One of the earliest proposals of a bivariate sign test for H0 : ϑ = 0 against the
unrestricted shift alternative H1 : ϑ 6= 0 is by Hodges (1955). He uses the test
statistic

SHodges(X1, . . . ,Xn) = sup
‖a‖=1

#{i : aTX i > 0},

which is the supremum of the univariate sign test statistics on all possible pro-
jections of the data. For this test statistic, Hodges derives a formula for the
upper tail of the conditional null distribution given the lines through the origin
that the observations lie on. Hodges mentions that the statistic is also applicable
for higher dimensions than p = 2, but that the distribution will not be easily
tractable.

Essentially the same test is proposed in the context of circular distributions by
Ajne (1968), who derives the formula for the entire conditional null distribution.
The test is therefore also known as the Hodges–Ajne test .

We use the term “Hodges-type” tests here for tests that are based on the
supremum or infimum of univariate sign test statistics over a certain range of
projections of the data – not only in the bivariate case, but also in higher dimen-
sions.

9.2 Sign Test by Larocque and Labarre (2004)

Larocque and Labarre (2004) propose a conditionally distribution-free sign test
forH0 : ϑ = 0 vs.H1 : ∃ i : ϑi > 0. (The authors use two contradictory definitions
of the hypotheses, but the test seems to be more appropriate for the one given
here.) Larocque and Labarre modify Hodges’ test statistic by restricting the
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direction vectors a over which the supremum is taken to the ones in the positive
orthant, i. e.

SLarLab(X1, . . . ,Xn) = sup
‖a‖=1,a≥0

#{i : aTX i > 0}.

This test statistic is shown to be conditionally distribution-free under H0 for some
class of distributions including the continuous directionally symmetric distribu-
tions, where the conditioning is with respect to the number M of observations
outside the positive and the negative orthant; for dimensions p > 2, an additional,
more technical conditioning is used. For p = 2, the conditional distribution can
be explicitly obtained, while for p > 2, it has to be approximated by simulation.

9.3 Modification for a One-Orthant Alternative

The supremum in the definition of SLarLab is taken over the positive orthant
only. However, it will still lead to significant test results if only one component
of the observations has sufficiently many positive values, even though all other
components may always have distinctly negative values. This is not desirable
for a one-orthant alternative with a composite null hypothesis, where we would
like to conclude from a significant test result that the symmetry center of the
distribution is positive in all components.

If, in contrast, we replace the supremum by an infimum, i. e.

SLarLab,o(X1, . . . ,Xn) = inf
‖a‖=1,a≥0

#{i : aTX i > 0},

the statistic gives the minimal number of points being on the positive side for
each projection along a direction in the positive orthant. This is once more in the
spirit of an intersection-union test. Since we only use a simple null hypothesis
for determining the decision rule, the test will still not respect the level for the
(composite) (2p − 1)-orthant null hypothesis, but it will nevertheless be more
suitable for this kind of problem than the original test based on SLarLab.

For a directionally symmetric distribution of the observations, the distribution
of SLarLab,o under the simple null hypothesis ϑ = 0 is the same as that of n −
SLarLab, such that we can derive conditional distributions from Theorem 1 in
Larocque and Labarre (2004), or from their Theorem 2 for the special case p = 2.
(Note that the proof of Theorem 2 given by Larocque and Labarre contains two
small mistakes: Rj should be defined as R0 +

∑j
k=1Rk, and the expression given

for P (Z ≥ x |M = m) is valid for every x ∈ Z – it is not only used for the values
indicated.)
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9.4 Extension to a Convex Cone Alternative

We can adapt the test statistic to the more general alternative H1 : ϑ ∈ C,
where C ⊂ R

p is a convex cone. For this situation, we can examine whether a
sufficiently high proportion of the data is on the “right” side of each hyperplane
tangent to the cone (i. e. on the same side as the cone):

SLarLab,c(X1, . . . ,Xn;C) = inf
‖a‖=1,a∈C∗

#{i : aTX i > 0},

where C∗ = {a : aTc ≥ 0 ∀ c ∈ C} is the positive dual of the cone C. (If C is the
positive orthant, the statistic reduces to SLarLab,o(X1, . . . ,Xn) because C∗ = C.)

We can derive the conditional null distribution of this statistic in analogy to
that of SLarLab,o. In order to adapt the results in Larocque and Labarre (2004),
we modify the notation as follows:

M = #{i : X i 6∈ C ∪ −C}
Y = #{i : X i ∈ C}

We only investigate in detail the conditional distribution of SLarLab,c given
M in the bivariate case here. In agreement with the notation used before, we
denote the statistic SLarLab,c as SLarLab,s in this case of a sector alternative. The
adaptation of Theorem 2 in Larocque and Labarre (2004) can be carried out as
follows:

Theorem 9.4.1. Let X1, . . . ,Xn be a sample from a bivariate distribution that
is directionally symmetric with respect to 0. Let C be the sector between the angles
ϕ1 and ϕ2, with ϕ2 − ϕ1 ∈ (0, π). For M as above and s ∈ {0, . . . , n− ⌈m/2⌉},

P (SLarLab,s(X1, . . . ,Xn;ϕ1, ϕ2) ≤ s |M = m) =
1

2n

n−m∑

y=0

F (m− s+ y)

(
n−m

y

)
,

where

F (x) =
m∑

a=0
x<max(a,m−a)

(
m

a

)
+

m∑

a=0
max(a,m−a)≤x≤m

(
m

x

)

= 1(x ≤ m)
m∑

a=0

(
m

max(x, a,m− a)

)

for x ∈ Z.

Proof. Let ξi ∈ [0, 2π) be the (oriented) angle between the second coordinate
axis and X i, and ξ̃i = ξi mod π ∈ [0, π), which is equal to the (oriented) angle
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between the first coordinate axis and the line perpendicular on X i. Without loss
of generality, assume ϕ2 = π

2
and 0 < ξ̃1 < . . . < ξ̃n < π.

There are

M = #{i : X i 6∈ C ∪ −C} = #
{
i : 0 ≤ ξ̃i < ϕ1 +

π

2

}

observations that do not have the same sign for every projection examined. For
these M observations (i. e. for i = 1, . . . ,M), let

Zi =

{
−1 if ξi ≥ π,

+1 if ξi < π.

(Zi is the change in the number of observations with a positive projection when
the direction of the projection passes through ξi counterclockwise.) These random
variables are independent with P(Zi = −1) = P(Zi = +1) = 0.5. Therefore,

R∗
j =

j∑

i=1

Zi (j = 0, . . . ,M)

is a symmetric binary random walk on Z starting at R∗
0 = 0, for which by sym-

metry and Theorem B.4.1 (for a fixed M = m)

P

(
min

0≤j≤m
R∗

j ≤ b

∣∣∣∣R
∗
m = m− 2a

)
= P

(
max

0≤j≤m
R∗

j ≥ −b
∣∣∣∣R

∗
m = 2a−m

)

=

(
m

(m−2b−2a+m)/2

)
(

m
(m+2a−m)/2

) =

(
m

m−a−b

)
(

m
a

)

for a ∈ {0, . . . ,m} and b ∈ {−a, . . . ,min(0,m− 2a)}.
Now, let

R0 = #{i : π ≤ ξi <
3π

2
+ ϕ1} = #{i ≤M : Zi = −1},

Rj = R0 +R∗
j (j = 1, . . . ,M)

be a shifted version of this random walk. By the definition of R0, RM = R0 +
(M −R0) −R0 = M −R0. For r0 ∈ {0, . . . ,m},

P

(
min

0≤j≤m
Rj ≤ b

∣∣∣∣M = m,R0 = r0

)

= P

(
min

0≤j≤m
R∗

j ≤ b− r0

∣∣∣∣M = m,R∗
m = m− 2r0

)

=






0 for b < 0,
( m

m−r0−(b−r0))
(m

r0
)

=
( m

m−b)
(m

r0
)

for b ∈ {0, . . . ,min(r0,m− r0)},

1 for b > min(r0,m− r0).
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Given M = m, R0 has a binomial distribution with parameters m and 0.5, and
therefore

P

(
min

0≤j≤m
Rj ≤ b

∣∣∣∣M = m

)

=
m∑

r0=0

P (R0 = r0 |M = m) P

(
min

0≤j≤m
Rj ≤ b

∣∣∣∣M = m,R0 = r0

)

=
m∑

r0=0

min(r0,m−r0)≥b

1

2m

(
m

r0

)( m
m−b

)
(

m
r0

) +
m∑

r0=0

min(r0,m−r0)<b

1

2m

(
m

r0

)

=
1

2m




m∑

r0=0

max(r0,m−r0)≤m−b≤m

(
m

m− b

)
+

m∑

r0=0

m−b<max(r0,m−r0)

(
m

r0

)




=
1

2m
F (m− b),

for b ≥ 0 (this conditional probability is 0 for b < 0).

We define the angles θj such that 0 < θ0 < ξ̃1 < θ1 < . . . < θM−1 < ξ̃M <
θM < ϕ1 + π

2
and the corresponding unit vectors aj = (cos θj, sin θj)

T. Looking
at the random walk given by #{i : aT

j X i > 0} (j = 0, . . . ,M), we can write

SLarLab,s(X1, . . . ,Xn;ϕ1, ϕ2) = inf
‖a‖=1,a∈C∗

#{i : aTX i > 0}

= min
0≤j≤M

#
{
i : aT

j X i > 0
}

= min
0≤j≤M

R∗
j + # {i : Xi1 > 0}

= min
0≤j≤M

R∗
j +R0 + # {i : X i ∈ C}

= min
0≤j≤M

Rj + #{i : X i ∈ C}.

The second term in the last line has a binomial distribution with parameters n−m
and 0.5 (given M = m). The two terms are independent (given M = m), and
we can therefore obtain the conditional distribution of the sum by the following
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convolution:

P (SLarLab,s(X1, . . . ,Xn;ϕ1, ϕ2) ≤ s |M = m)

=
n−m∑

y=0

P

(
min

0≤j≤m
Rj ≤ s− y

∣∣∣∣M = m

)
P (#{i : X i ∈ C} = y |M = m)

=
n−m∑

y=0

1

2m
F (m− s+ y)

1

2n−m

(
n−m

y

)

=
1

2n

n−m∑

y=0

F (m− s+ y)

(
n−m

y

)

For the discussion of further properties, we return to the general p-variate
case and to the test for a convex cone alternative.

Theorem 9.4.2. SLarLab,c(X1, . . . ,Xn;C) is affine invariant.

Proof. Let D be any nonsingular p× p matrix. Then

SLarLab,c(DX1, . . .DXn; DC) = inf
‖a‖=1,a∈(DC)∗

#{i : aTDX i > 0}

= inf
‖a‖=1,aTc≥0 ∀ c∈DC

#{i : aTDX i > 0}

= inf
‖a‖=1,aTDc≥0 ∀ c∈C

#{i : aTDX i > 0}

= inf
‖ã‖=1,ãTc≥0 ∀ c∈C

#{i : ãTX i > 0}

= inf
‖ã‖=1,ãT∈C∗

#{i : ãTX i > 0}

= SLarLab,c(X1, . . .Xn;C).

For the fourth equality, we have defined ã = DTa. (Note that the condition
‖a‖ = 1 for the infimum is equivalent to ‖a‖ > 0 – it is just used for selecting
one representative for each direction. It can therefore also be replaced by ‖ã‖ > 0
or ‖ã‖ = 1.)

Translation invariance is given by definition (see Section 2.4).

Because the quantities used for conditioning (M , Y , but also the more com-
plicated properties used for p > 2) are invariant under affine transformations, the
result of the test based on the conditional distribution of SLarLab,c under ϑ = 0
is also affine invariant.

The test statistic SLarLab,c is cone order monotone in each observation with
respect to C: For a ∈ C∗ and c ∈ C, aT(X i + c) = aTX i + aTc ≥ aTX i by the
definition of the positive dual.
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However, there are examples showing that the tests based on the conditional
null distribution of SLarLab,c are not cone order monotone in the sample with
respect to C or C∗ (and therefore not cone order monotone in each observation
either). Such examples occur when a translation of the observations does not
change SLarLab,c but does reduce M .
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Chapter 10

Graphical Comparison Methods

Given the availability of several test proposals, we need methods that allow for
the selection of an appropriate test in a specific situation, i. e. of a test that is
suitable for a given combination of null and alternative hypotheses. Further, we
would like to compare different tests.

In this chapter, we present three methods that allow for a graphical assessment
of the properties of a test. The first two sections deal with such methods from
the literature. In Section 10.3, we propose a novel approach.

We present these methods using simple, highly parametric examples, for which
most of the required distributions are readily available. In Chapter 11, we will
apply two of these comparison methods to some of the nonparametric tests dis-
cussed in the previous chapters.

10.1 Acceptance and Rejection Regions

A method that is commonly used to visualize bivariate location tests in the para-
metric context is that of drawing the border of the acceptance region, i. e. of the
set of values of some (bivariate) statistic that lead to the acceptance of the null
hypothesis. (The complement of this set is the rejection region.) If the statistic
used is the same for different test procedures, this method also allows for a com-
parison of the procedures. Such plots can be found, e. g., in Follmann (1996) and
Logan (2003).

For illustration purposes, we use a very simple situation:

Definition 10.1.1. Assume that some statistic Z has a bivariate normal dis-
tribution with the covariance matrix known to be the identity matrix but with
unknown location parameter ϑ. Consider the simple H0 : ϑ = 0, and choose
α ∈ (0, 1

2
). Define tests using the following decision rules based on a single ob-

served value Z = z:

(a) Unrestricted χ2 test : Reject H0 for z2
1 + z2

2 > χ2
1−α(2).
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(b) z min test for the simple H0: Reject H0 for min(z1, z2) > z1−√
α.

(c) z max test : Reject H0 for max(z1, z2) > z√1−α.

(d) z sum test : Reject H0 for z1 + z2 >
√

2 z1−α.

(e) X2
+ test by Follmann (1996): Reject H0 for z2

1 + z2
2 > χ2

1−2α(2) and, simul-
taneously, z1 + z2 > 0.

(For 0 < p < 1, zp and χ2
p(k) denote the p quantile of the standard normal distri-

bution and of the chi-square distribution with k degrees of freedom, respectively.)
△

Note that due to the assumption of independent components and the simple
null hypothesis, the z max test and the z min test can be formulated in a more
powerful way than would result from the considerations in Sections 5.1 and 5.2.

Theorem 10.1.1. The tests from Definition 10.1.1 (a)–(e) are of level α for the
simple H0 : ϑ = 0.

Proof.

(a) Z2
1 + Z2

2 has a χ2 distribution with 2 degrees of freedom.

(b) P0

(
min(Z1, Z2) > z1−√

α

)
= P0

(
Z1 > z1−√

α

)
P0

(
Z2 > z1−√

α

)

=
(√

α
)2

= α.

(c) P0

(
max(Z1, Z2) > z√1−α

)
= 1 − P0

(
Z1 ≤ z√1−α

)
P0

(
Z2 ≤ z√1−α

)

= 1 −
(√

1 − α
)2

= α.

(d) Z1 +Z2 has an N(0, 2) distribution, of which
√

2 z1−α is the 1− α quantile.

(e) Due to the symmetry of the distribution of Z with respect to the line
Z1 + Z2 = 0,

P0

(
Z2

1 + Z2
2 > χ2

1−2α(2), Z1 + Z2 > 0
)

=
1

2
P0

(
Z2

1 + Z2
2 > χ2

1−2α(2)
)

=
1

2
· 2α = α.

The rejection regions of these test procedures for α = 0.05 are shown in Figure
10.1; they were determined as follows:

(a) Unrestricted χ2 test:
√
z2
1 + z2

2 >
√
χ2

0.95(2) ≈
√

5.99 ≈ 2.45.

(b) z min test for the simple H0: min(z1, z2) > z1−
√

0.05 ≈ 0.76.
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Figure 10.1: Acceptance and rejection regions for a bivariate normal statistic with
independent components of variance 1. (The upper right corner of the plot area
is in the rejection region for each test.) unrestricted χ2 test; z min test for
the simple H0; z max test; z sum test; Follmann’s X2

+ test.
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(c) z max test: max(z1, z2) > z√0.95 ≈ 1.95.

(d) z sum test: z1 + z2 >
√

2 z0.95 ≈ 2.33.

(e) X2
+ test by Follmann (1996):

√
z2
1 + z2

2 >
√
χ2

0.9(2) ≈
√

4.61 ≈ 2.15 and
z1 + z2 > 0.

From Figure 10.1, we see that the rejection region of each of these five tests
is closer to the origin than the other four rejection regions for certain directions.
The figure suggests that

• the z min test for the simple H0 is most appropriate for the alternative that
ϑ is in the first quadrant,

• the z max test is suitable for the alternative that ϑ is outside the third
quadrant, and

• the other two restricted alternative tests are appropriate for a half-plane
alternative.

We can only use the approach using acceptance and rejection regions for the
comparison of tests based on some common (multivariate, preferably p-variate
if ϑ ∈ R

p) statistic. Such a common underlying statistic (except the sample
itself) is not generally available when we would like to compare parametric and
nonparametric tests or nonparametric tests among each other, and therefore, this
approach is not applicable.

A further, inherent problem of the approach is that, in some sense, the assess-
ment of tests is done in the wrong space – the observed properties (in the space of
the statistic) have to be reinterpreted in the parameter space. As an example, it
is impossible to conclude from Figure 10.1 that the z min test for the simple H0 is
actually liberal for the three-quadrant null hypothesis, which is the case since the
level α is only controlled at the origin. (A more general, but rather conservative
version of the z min test that is actually of level α for the three-quadrant null
hypothesis can be defined by rejecting H0 for min(z1, z2) > z1−α; see Section 5.2.)

10.2 Power at a Fixed Distance from the Origin

We can also examine a test graphically in the bivariate case by plotting the curve
of the power depending on the angle of ϑ, while the distance of ϑ from the origin is
held constant. A plot of the power curves of several tests allows for an immediate
comparison of the powers for any angle (at the given distance from the origin).

As a first example, we calculate the power curves for the same tests as in the
preceding section.
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Theorem 10.2.1. The power of the tests from Definition 10.1.1 at some param-
eter value ϑ can be obtained as follows:

(a) Unrestricted χ2 test:

Pϑ

(
Z2

1 + Z2
2 > χ2

1−α(2)
)

= P
(
X2

2,‖ϑ‖2 > χ2
1−α(2)

)
,

where X2
2,‖ϑ‖2 is a noncentral χ2 random variable with 2 degrees of freedom

and noncentrality parameter ‖ϑ‖2.

(b) z min test for the simple H0:

Pϑ

(
min(Z1, Z2) > z1−√

α

)
=
[
1 − Φ(z1−√

α − ϑ1)
] [

1 − Φ(z1−√
α − ϑ2)

]
.

(c) z max test:

Pϑ

(
max(Z1, Z2) > z√1−α

)
= 1 − Φ(z√1−α − ϑ1)Φ(z√1−α − ϑ2).

(d) z sum test:

Pϑ

(
Z1 + Z2 >

√
2 z1−α

)
= 1 − Φ

(
z1−α − ϑ1 + ϑ2√

2

)
.

(e) X2
+ test by Follmann (1996):

Pϑ

(
Z2

1 + Z2
2 > χ2

1−2α(2), Z1 + Z2 > 0
)

= Φ
(
ϑ̃1

)
− lim

k→∞

k∑

j=1

[
Φ
(
ak,j − ϑ̃1

)
− Φ

(
ak,j−1 − ϑ̃1

)]

·
[
Φ
(
ak,k+1−j − ϑ̃2

)
− Φ

(
−ak,k+1−j − ϑ̃2

)]
,

where

ϑ̃1 =
1√
2
(ϑ1 + ϑ2),

ϑ̃2 =
1√
2
(−ϑ1 + ϑ2),

ak,j = sin

(
j

k
· π
2

)√
χ2

1−2α(2).

(Φ denotes the cumulative distribution function of the standard normal distribu-
tion.)
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Figure 10.2: Approximation of the region {z : z2
1 + z2

2 ≤ χ2
1−2α(2), z1 > 0} by

k = 3 rectangles.

Proof.

(a) Pϑ

(
Z2

1 + Z2
2 > χ2

1−α(2)
)

= P0

(
(Z1 + ϑ1)

2 + (Z2 + ϑ2)
2 > χ2

1−α(2)
)
,

and under ϑ = 0, (Z1+ϑ1)
2+(Z2+ϑ2)

2 has a noncentral χ2 distribution
with 2 degrees of freedom and noncentrality parameter ϑ2

1 + ϑ2
2 = ‖ϑ‖2.

(b)–(d) The proof essentially uses the same decompositions as the one of Theo-
rem 10.1.1.

(e) Using a rotation about the origin by −π
4
, we simplify the desired power

to

Pϑ̃

(
Z2

1 + Z2
2 > χ2

1−2α(2), Z1 > 0
)

= Pϑ̃ (Z1 > 0) − Pϑ̃

(
Z2

1 + Z2
2 ≤ χ2

1−2α(2), Z1 > 0
)
, (∗)

where

ϑ̃ =

(
cos
(
−π

4

)
− sin

(
−π

4

)

sin
(
−π

4

)
cos
(
−π

4

)
)

ϑ =
1√
2

(
1 1
−1 1

)
ϑ.

The first term on the right hand side of (∗) is 1 − Φ(−ϑ̃1) = Φ(ϑ̃1).

Thanks to the rotation performed, we can easily approximate the sec-
ond term on the right hand side of (∗): The probability that Z lies
within the half circle H = {z : z2

1 + z2
2 ≤ χ2

1−2α(2), z1 > 0} is the
limit for k → ∞ of the probability that Z lies within one of the rect-
angles Rk,j = (ak,j−1, ak,j) × (−ak,k+1−j, ak,k+1−j) (j = 1, . . . , k). (In
Figure 10.2, the situation is illustrated for k = 3.) We can easily ex-
press these probabilities using the univariate standard normal distribu-
tion function because the components are independent. The area of
∆k =

⋃k
j=1Rk,j r H converges to 0, and it follows from the bounded-

ness of the underlying density that the probability of Z lying within ∆k

converges to 0.

The power curves of the five tests at distance
√

10 from the origin are shown
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Figure 10.3: Power at distance ‖ϑ‖ =
√

10 from the origin for a bivariate normal
statistic with independent components of variance 1. The dotted lines indicate the
nominal significance level and the quadrant borders, respectively. unrestricted
χ2 test; z min test for the simple H0; z max test; z sum test;
Follmann’s X2

+ test.

in Figure 10.3. It is obvious that we could restrict our attention to the left or
right half of the curves because all tests behave symmetrically with respect to the
diagonal at angle π/4.

From this plot, it is now obvious that the z min test for the simple H0 is
liberal if it is applied to the three-quadrant null hypothesis. Further, we can see
that the z sum test has power α for the angles −π/4 and 3π/4. The plot also
reveals that Follmann’s X2

+ test is liberal for the half-plane null hypothesis; its
curve and the one for the z max test are quite similar.

Except for such simple cases as the ones used here, the power at some selected
angles has to be estimated by simulation in practice. An example of such a plot
can be found in Follmann (1996).

While the power function approach described in this section acts directly in the
parameter space, which facilitates interpretation, and circumvents the necessity
of some common underlying statistic, the following problems arise:

• The resulting curve may depend quite heavily on the chosen distance from
the origin. When we compare tests, this may lead to contradictory results.
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(In the example, for a distance of 1, the curve of Follmann’s X2
+ test is

nearly identical to that of the z max test, except for angles around π/4.
For large distances, however, its curve is much more similar to that of the
z sum test.)

• We do not obtain any information about the behavior of a test at the origin.
Thus, we cannot use the plot for the assessment of the actual significance
level at the simple null hypothesis ϑ = 0.

10.3 Curve of Constant Power

The power function of a test for a p-variate location parameter is a function from
R

p to [0, 1]. In the bivariate location problem, its graph is therefore a surface in
R

3. In Figure 10.4, this graph is shown for the z min test for the simple H0, again
assuming a bivariate normal distribution with unit covariance matrix.

The method described above, which reduces this graph to two dimensions,
is the choice of a fixed distance of ϑ from the origin. This corresponds to an
intersection of the power surface with a vertical cylinder centered at the origin.

A second possibility for the reduction to two dimensions is the consideration
of a horizontal section through the graph. The resulting curve separates the
parameter values where the test has power below the chosen value from those
where it has higher power. In more mathematical terms, the curve is the preimage
of the chosen power value under the power function of the test considered. (A
third possibility is used by Minhajuddin, Frawley, Schucany, and Woodward,
2006: They look at the power curve when the location parameter varies along
some straight line through the origin. Several such plots have to be used if the
primary interest is in the behavior of a test for different directions.)

The choice of the power value where the horizontal section is taken is arbitrary,
but a natural value is given by the desired nominal significance level α of the test.
For the situation shown in Figure 10.4, the resulting curve is given in Figure 10.5,
together with the curves for the other tests used in this chapter. (The calculation
of the curves is described in Theorem 10.3.1 below.)

In the composite null hypothesis case, if the chosen power value is equal to
α, the curve should ideally (for an unbiased test) separate Θ1 (where the power
should be at least α) from its complement (the parameter values corresponding
to the null hypothesis, for which the power should be at most α). Thus, the curve
indicates the shape of the hypothesis combinations that a test may be appropriate
for. The distance of the curve from the origin also gives an impression of how well
the true significance level matches the nominal one for the simple null hypothesis.
We can easily combine several such curves for different tests into one plot for
comparison purposes.

However, we will rarely encounter the ideal case of a curve coinciding with the
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Figure 10.4: The power function of the z min test for a simpleH0 under a bivariate
normal distribution with expectation ϑ and the identity covariance matrix.
intersection with a cylinder, i. e. power at some fixed distance (here:

√
10) from

the origin; horizontal section, i. e. curve of constant power (here: 0.05).
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Figure 10.5: Curves of power 0.05 for the four restricted alternative tests for a
bivariate normal statistic with independent components of variance 1. The power
is above 0.05 to the right of and above each curve. The degenerate curve for the
unrestricted χ2 test would be a point at the origin. z min test for the simple
H0; z max test; z sum test; Follmann’s X2

+ test.

border of Θ1 in practice: As we have seen in Section 3.2, under some regularity
assumptions, there are no unbiased tests for H0 : ϑ ∈ R

p
r Θ1 vs. H1 : ϑ ∈ Θ1

when Θ1 has no smooth border.

The curves of power 0.05 in Figure 10.5 were obtained using the following
theorem, except for Follmann’s X2

+ test, where the power was approximated using
Theorem 10.2.1 (e) on a grid.

Theorem 10.3.1. For the tests from Definition 10.1.1, the curves of power β
and their asymptotes are given as follows:

(a) Unrestricted χ2 test: The curve with power β ≥ α is a circle with radius r
around the origin; r has to be chosen such that

P
(
X2

2,r2 ≤ χ2
1−α(2)

)
= 1 − β,

where X2
2,r2 is a noncentral χ2 random variable with 2 degrees of freedom

and noncentrality parameter r2.



10.3 Curve of Constant Power 61

(b) z min test for the simple H0:

ϑ2 = ϑ2(ϑ1) = z1−√
α − z1−β/[1−Φ(z1−

√
α−ϑ1)] (ϑ1 > z1−√

α − z1−β)

ϑ2 → z1−√
α − z1−β (ϑ1 → ∞)

(c) z max test:

ϑ2 = ϑ2(ϑ1) = z√1−α − z(1−β)/Φ(z√1−α−ϑ1) (ϑ1 < z√1−α − z1−β)

ϑ2 → z√1−α − z1−β (ϑ1 → −∞)

(d) z sum test:
ϑ2 = ϑ2(ϑ1) =

√
2 (z1−α − z1−β) − ϑ1

(e) X2
+ test by Follmann (1996):

ϑ2 = ϑ2(ϑ1) ∼
√

2zβ − ϑ1 (|ϑ1| → ∞)

In (b)–(e), the roles of ϑ1 and ϑ2 can be swapped due to the symmetry of the
test statistics and of the distribution.

Proof.

(a) From Theorem 10.2.1 (a), it follows that the power depends only on the
distance r = ‖ϑ‖ from the origin. The condition on r is obvious.

(b)–(d) We equate the expressions for the power given in Theorem 10.2.1 to β,
and we can solve these equations for ϑ2 as a function of ϑ1 without any
difficulty. The asymptotic behavior in (b) and (c) results from the fact
that Φ(x) → 0 for x→ −∞ and Φ(x) → 1 for x→ ∞, respectively.

(e) |ϑ1| → ∞ implies ‖ϑ‖ → ∞, and therefore

Pϑ

(
Z2

1 + Z2
2 > χ2

1−2α(2)
∣∣Z1 + Z2 > 0

)
→ 1,

such that

Pϑ

(
Z2

1 + Z2
2 > χ2

1−2α(2), Z1 + Z2 > 0
)

= Pϑ

(
Z2

1 + Z2
2 > χ2

1−2α(2)
∣∣Z1 + Z2 > 0

)
Pϑ (Z1 + Z2 > 0)

∼ Pϑ (Z1 + Z2 > 0) = Pϑ

(
Z1 − ϑ1 + Z2 − ϑ2√

2
> −ϑ1 + ϑ2√

2

)

= 1 − Φ

(
−ϑ1 + ϑ2√

2

)
= Φ

(
ϑ1 + ϑ2√

2

)
(|ϑ1| → ∞).

We can now equate this expression to β and solve it for ϑ2.
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For α = β = 0.05, the asymptotes are ϑi = z1−
√

0.05 − z1−0.05 ≈ z0.78 − z0.95 ≈
0.76 − 1.64 ≈ −0.88 (z min test for the simple H0), ϑi = z√0.95 − z0.95 ≈ 1.95 −
1.64 ≈ 0.31 (z max test), ϑ2 = −ϑ1 (z sum test), and ϑ2 =

√
2 z0.05 − ϑ1 ≈

1.41 · (−1.64) − ϑ1 ≈ −2.33 − ϑ1 (Follmann’s X2
+ test).

In Figure 10.5, we can see that, near the origin, the curves are very similar
for the z max test and the X2

+ test. For the orthant alternatives, none of the
curves is ideal, as was to be expected – e. g., the z min test with power 0.05 at
the origin has higher power at all other points on the border of the first quadrant.
When we think of composite null hypotheses, this test would therefore be more
suitable for a non-inferiority setting as was presented in Section 2.3. The z min
test according to Section 5.2 would have a curve that asymptotically reaches the
border of the first quadrant for ‖ϑ‖ → ∞, but this curve would pass noticeably
above and to the right of the origin, meaning that the test is conservative near
the origin. We will investigate similar curves in the following chapter.

We can also use the concept of curves of parameter values leading to power
α to compare the behavior of one test under different distributions. This gives
us an impression of how sensitive a test is e. g. to a deviation from a normal
distribution.

A short presentation of the approach using curves of constant power is given
in Vock (2006). Apparently, the full range of applications of this type of plot has
not been recognized before: The only known similar plot in the literature is a
contour plot of the power function of a bivariate test in Jennison and Turnbull
(1993), which is not suitable for a direct comparison of tests.

For location tests that are also applicable to dimensions p > 2, the properties
in the bivariate case give a rough indication of what can be expected in higher
dimensions. But the method described may also be useful for direct application
in higher dimensions: While the graph of the power function would be in R

p+1,
the preimage of some fixed power value is a subset of R

p. For p = 3, this is a
surface and can still be visualized, although comparisons are difficult. In higher
dimensions, we would have to look at sections.
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Chapter 11

Comparison of the Proposed
Tests

We now apply the graphical methods from the previous chapter to some of the
tests that have been proposed.

The approach comparing acceptance and rejection regions is not used because
the tests to be compared are based on entirely different statistics. The power
curve at a fixed distance from the origin is only used in one case (uncorrelated
normal components) for illustration purposes; we concentrate on the curves of
constant power.

The exact and even the asymptotic distributions of the test statistics under
specific alternative hypotheses are intractable for most of the tests investigated.
However, we can obtain approximate power values using simulations.

Our choice of tests is determined by the following factors: Emphasis is on
nonparametric proposals for restricted alternatives, but some parametric tests
and tests for non-restricted alternatives are also included for comparison purposes.
The proposals have to be precise enough to be implemented. Further, as the
comparisons based on simulations are rather time-consuming already for simple
test procedures, procedures with a high computational complexity could not be
used. For this reason, bootstrap methods are not included. We use the min tests
(see Section 5.2) based on the univariate sign and Wilcoxon signed rank test, the
cone/opposite cone test (Section 6.2), the sector versions of the spatial sign test
by Möttönen and Oja (Section 7.3) and of Randles’s test (Section 8.3), the test by
Larocque and Labarre (2004), and its version for a convex sector (Sections 9.2 and
9.4). We also include the angle test by Brown (1983) and a one-sample analogue of
the multi-sample test by O’Brien (1984), i. e. a Wilcoxon signed rank test applied
to the sum of componentwise ranks, subsequently called O’Brien/Wilcoxon test .
As examples of parametric restricted alternative tests, we use the test based on
the conservative bound for the likelihood ratio test statistic by Perlman (1969),
the min test based on univariate t tests, and the proposal by Glimm, Srivastava,
and Läuter (2002). For the power curve at a fixed distance from the origin, we
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Figure 11.1: Location parameters for the estimation of the power curve at a fixed
distance from the origin. The alternative region for most of the tests is the first
quadrant, which is hatched. All dots have distance

√
2/2 from the origin, and

the respective angle is indicated in the figure.

also compare these tests to tests for unrestricted alternatives, namely the spatial
sign test by Möttönen and Oja (1995), the test by Randles (2000), the one by
Blumen (1958), and the parametric T 2 test by Hotelling (1931).

In doing power comparisons, of course, the choice of the alternative region,
of the underlying distribution, of the sample size, and of the points where the
power is calculated is somewhat arbitrary. For the tests that allow for general
sector alternative hypotheses, we use the first quadrant as the alternative region;
for tests about a specific direction, this hypothetical direction is chosen at the
angle π/4. We use a moderate sample size of n = 20.

11.1 Uncorrelated Normal Case

We use the bivariate normal distribution to gain a first impression of the behavior
of the tests. The normal distribution is also useful for assessing the loss in effi-
ciency with respect to parametric tests in the case where the latter are optimal.
The location parameter ϑ is the mean; we assume the two components to be
uncorrelated, each with variance 1.

11.1.1 Power at a Fixed Distance from the Origin

For ϑ, we use points at the angles π/4, π/8, 0, −π/8, −π/4, −π/2, and −3π/4.
The distance from the origin is left constant at

√
2/2. These points and the

corresponding angles are shown in Figure 11.1. Due to symmetry, we do not need
to consider angles in the other half of the plane.

The results for the uncorrelated normal case are shown in Figure 11.2, in
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Figure 11.2: Results of the simulation study for the uncorrelated bivariate normal
case (n = 20): Power of different tests for the alternative values of ϑ shown in
Figure 11.1. The nominal significance level of α = 0.05 is indicated by a dotted
horizontal line.

which the estimated power (obtained by simulation) is plotted as a function of
the angle of ϑ. The points were obtained by at least 100,000 simulations each
and are linearly interpolated in the graph.

Based on these results, we can give a first classification of the tests compared:

• Tests for a point null hypothesis vs. an unrestricted alternative: The hor-
izontal lines indicate constant power in every direction. This is the case
for Blumen’s bivariate sign test, the spatial sign test by Möttönen and Oja
(1995), the Qd test by Randles (2000), and the classical T 2 test.

• Tests for a one-quadrant null hypothesis vs. a three-quadrant alternative:
The power curve of these tests is near zero (and clearly below the significance
level) for angles below −π/2, then rises rapidly. This class contains the
test using SLarLab by Larocque and Labarre (2004), the one by Glimm,
Srivastava, and Läuter (2002) (originally proposed by the authors for a
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one-quadrant alternative), and the procedure using the upper bound for
the p-value of the likelihood ratio test by Perlman (1969).

• Tests for a half-space null hypothesis vs. a half-space alternative: The power
of this class of tests is below the significance level for angles up to −π/4, then
increases and tendentially takes even higher values than for tests in the pre-
vious class if alternatives in the first quadrant and close to the main diagonal
are investigated. Examples are Brown’s angle test, the O’Brien/Wilcoxon
test, and, less powerful in the normal case, the cone/opposite cone test.

• Conservative tests for a three-quadrant null hypothesis vs. a one-quadrant
alternative: For these tests, the power curve exceeds the significance level
only for angles larger than 0. These are the min tests based on component-
wise sign, Wilcoxon signed rank, or t tests, respectively. (In this case, the t
min test corresponds to the likelihood ratio test by Sasabuchi, 1988.) Note
that the term “conservative” relates to the behavior for alternatives near
the main diagonal, and not for those that are at the border of the positive
quadrant but away from the origin.

• Liberal tests for a three-quadrant null hypothesis vs. a one-quadrant alter-
native: In order to avoid the conservativeness of the previous group of tests
for alternatives near the main diagonal, these tests are designed to reach the
significance level at the origin. As a consequence, they are slightly liberal
at the border for the three-quadrant null hypothesis. These tests may be
adequate in the case of non-inferiority hypotheses such as those presented
in Section 2.3. This class of tests contains the sector variant of the spatial
sign test (Ssgn,s), the sector variant of Randles’s test (SRandles,s), and the one
of Larocque and Labarre’s test (SLarLab,s).

The classification of the one-sided tests is based on composite null hypotheses.
For the simple null hypothesisH0 : ϑ = 0, all the tests do (at least asymptotically)
respect the significance level, such that we can choose a test from the class with
highest power for the alternative that we have in mind. According to the figure,
this will probably be one of the first three classes mentioned.

11.1.2 Curve of Constant Power

In Figure 11.3 (a), the approximate curves of power 0.05 are shown for the re-
stricted alternative tests from above for the case that the components are uncor-
related and have a standard normal distribution. These curves were estimated
by the algorithm described in Appendix C.

The tests for unrestricted alternatives have been omitted in this figure. Their
curve with power 0.05 should theoretically be a dot at the origin or, for a con-
servative test, a small circle around the origin (for a liberal test, there would not
exist any such curve at all).
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In this figure, we can again identify the classes of tests for restricted alterna-
tives defined above. However, we can make some additional observations:

• The conservative and the liberal tests for a three-quadrant null hypothesis
have approximately parallel curves. This can be explained by the fact that
these tests are all based on a minimum of two componentwise test statistics
(or an infimum over more than two directions in the case of SLarLab,s), but
that the critical value is derived from the distribution at the quadrant border
(infinitely far away from the origin) or at the origin, respectively. All of these
tests are intersection-union tests, but with varying overall level. Actually,
in the case of independent components, tests very similar to those of the
liberal class with nominal level α can be obtained by performing a test of
the conservative class at the nominal level

√
α; vice versa, a test of the

liberal class performed at the nominal level α2 will result in a test similar
to those of the conservative class with nominal level α.

• In the class of half-space tests that we defined based on the power at a
fixed distance from the origin, the shapes of the curves are quite diverse for
the three tests. While the curve of Brown’s angle test is approximately a
straight line through the origin, the curves of the O’Brien/Wilcoxon test
and the cone/opposite cone test are manifestly bent, somewhat resembling
the tests for a three-quadrant null hypothesis. These two tests can therefore
be regarded as a separate class between the test for a half-space problem
(Brown) and the liberal tests for a three-quadrant null hypothesis – for
the half-space null and alternative hypotheses, these tests are conservative.
(Note that we failed to recognize this difference in the first classification
because we only examined the power curve at one fixed distance from the
origin. The order of these three tests with respect to the power also depends
on the distance from the origin.)

Based on these observations, we can update our classification as follows:

(a) Tests for a simple null hypothesis vs. an unrestricted alternative: Blumen’s
bivariate sign test, spatial sign test by Möttönen and Oja (1995), Qd test
by Randles (2000), T 2 test.

(b) Tests for a one-quadrant null hypothesis vs. a three-quadrant alternative:
Tests by Larocque and Labarre (2004), Glimm, Srivastava, and Läuter
(2002), Perlman (1969).

(c) Tests for a half-space null hypothesis vs. a half-space alternative: Brown’s
angle test.

(d) Conservative tests for a half-space null hypothesis vs. a half-space alterna-
tive: O’Brien/Wilcoxon test, cone/opposite cone test.
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Figure 11.3: Approximate curves with power 0.05 for the tests with restricted al-
ternatives under standard normal components with correlation ρ ∈ {0, 0.7,−0.7}.
The symbols are used for identification purposes only; their positions on the
curves have no particular meaning.
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(e) Liberal tests for a three-quadrant null hypothesis vs. a one-quadrant alterna-
tive, potentially suitable for non-inferiority settings: Tests based on Ssgn,s,
SRandles,s, SLarLab,s.

(f) Conservative tests for a three-quadrant null hypothesis vs. a one-quadrant
alternative: sign min test, Wilcoxon min test, t min test.

(We have rearranged the classes such that the size of the null parameter region
is in increasing order and that the alternatives become more and more specific.)

11.2 Effects of Correlation in the Normal Case

As a second step, we use a bivariate normal distribution with expectation ϑ and
covariance matrix

(
1 ρ
ρ 1

)
, where ρ ∈ {−0.7, 0.7}.

We can see the effect of nonzero correlation on the curve of constant power in
parts (b) and (c) of Figure 11.3. The curve of the test by Perlman (conservative
bound) changes the most radically, especially with respect to the behavior for
large ‖ϑ‖; this test clearly does not respect the specified level for the one-quadrant
null hypothesis in the positively correlated case. The test by Glimm, Srivastava,
and Läuter, the O’Brien/Wilcoxon test, and the sector variant of the spatial sign
test still show substantial changes in the shape of the curve. The curves of the
other tests seem to be affected mainly near the origin, and these changes would
not lead to a different judgement on the hypotheses that a test may be suitable
for.

11.3 Heavy Tails: Bivariate t(1)

The noncentral bivariate t distribution with one degree of freedom serves us as an
example of an elliptically symmetric distribution with heavy tails. The symmetry
center ϑ is the noncentrality parameter (median). The observations are generated
as Z/

√
Y + ϑ, where Z and Y are independent, Y has a χ2 distribution with

one degree of freedom, and Z is a bivariate normal random vector with mean 0,
component variances 1, and correlation 0, 0.7, or −0.7.

Figure 11.4 shows that, when compared to the normal case, most of the curves
do not change dramatically in shape. As can be expected, the three parametric
tests are rather sensitive to the change in the underlying distribution. E. g., the t
min test becomes less powerful than the sign min test. The most radical change
concerns Perlman’s test – even using the conservative bound, this test has a
closed curve for ρ = 0.7, i. e. it has power above 0.05 for parameters on the main
diagonal and below approximately ϑ = (−2,−2)T.
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Figure 11.4: Approximate curves with power 0.05 for the tests with restricted
alternatives under a noncentral bivariate t(1) distribution, where the underlying
bivariate normal distribution has correlation ρ ∈ {0, 0.7,−0.7}. The symbols
are used for identification purposes only; their positions on the curves have no
particular meaning.
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11.4 “Exponential Radius” Distribution

The “exponential radius” distribution as defined in Larocque and Labarre (2004)
is an example of a directionally (but not diagonally) symmetric distribution. It is
generated by multiplying a unit vector having an angle distributed uniformly on
[0, π] by ln(2)−E, the (possibly negative) “radius”, where E has an exponential
distribution with parameter 1 and is independent of the angle.

We can introduce dependence between the two components of the random
vector by multiplication with the matrix





√
1
2

(
1 +

√
1 − ρ2

)
sgn ρ

√
1
2

(
1 −

√
1 − ρ2

)

sgn ρ

√
1
2

(
1 −

√
1 − ρ2

) √
1
2

(
1 +

√
1 − ρ2

)



 ,

which would transform a random vector with expectation 0 and covariance matrix(
1 0
0 1

)
into one with covariance matrix

(
1 ρ
ρ 1

)
. (Larocque and Labarre use a slightly

different, but equivalent procedure for negative values of ρ.) In these simulations,
we choose the values 0, 0.7, and −0.7 for ρ again. Finally, we add the location
parameter ϑ.

In Figure 11.5, we see that the curves with power 0.05 are no longer symmetric
with respect to the diagonal, but also that the shape of most of the curves does
not change dramatically. The curves for the cone/opposite cone test and the
O’Brien/Wilcoxon test now seem to be more similar to those of the tests for a
three-quadrant null hypothesis against a one-quadrant alternative than in the
previous cases. Perlman’s test is again very sensitive to the dependency structure
of the distribution.
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Figure 11.5: Approximate curves with power 0.05 for the tests with restricted
alternatives under an exponential radius distribution, where the parameter ρ was
chosen from {0, 0.7,−0.7}. The symbols are used for identification purposes only;
their positions on the curves have no particular meaning.
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Chapter 12

Confidence Regions

Statistical inference can be done by means of either hypothesis tests or confidence
regions. It was observed by McDermott and Wang (1999) that there has not been
much research about confidence regions for multivariate situations under order
restrictions. Even in the parametric context, this observation still seems to hold.
The purpose of this chapter is to translate some of the concepts formulated in
terms of hypothesis tests for restricted alternatives into corresponding confidence
regions and to obtain results about the shape of such confidence regions.

12.1 Connection with Hypothesis Tests

Since the connection between hypothesis tests and confidence regions is not as
intuitive as in the univariate setting, it seems worthwhile to establish an accurate
notational basis for confidence regions in a general parameter space. The defi-
nition of a confidence region that we use here is essentially taken from Witting
(1985, pp. 289ff.), using an adapted notation. (Even though ϑ may be from an
arbitrary parameter space in this section, we use a bold face letter as we will
apply the results in the context of location parameter vectors.)

Definition 12.1.1. Let (X ,A, (Pϑ)ϑ∈Θ) be a probability space, i. e. X is the
space that the observations occur in, A is a σ-algebra on X , and (Pϑ)ϑ∈Θ is a
family of probability measures. Let γ : Θ → Γ be a map into a suitable (for
details, see the footnote in Witting, 1985, p. 24) measurable superset of γ(Θ),
and α ∈ (0, 1). Further, for each ϑ ∈ Θ, let Γ0(ϑ) ⊂ Γ be specified.

Based on the family (Γ0(ϑ))ϑ∈Θ, a confidence region for γ(ϑ) with confidence
level 1 − α is a map C1−α : X → P(Γ) such that

A(γ) := {x ∈ X : C1−α(x) ∋ γ} ∈ A ∀ γ ∈ Γ

and
Pϑ(C1−α(X) ∋ γ) ≥ 1 − α ∀ γ ∈ Γ0(ϑ) ∀ ϑ ∈ Θ. △
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The first condition in Definition 12.1.1 only ensures measurability. Roughly
speaking, the set Γ0(ϑ) contains the values that should be in the confidence region
if ϑ is the true parameter.

There are simpler definitions (e. g. Borovkov, 1998, p. 285) of confidence re-
gions that use γ(ϑ) = ϑ and Γ0(ϑ) = {ϑ},∀ ϑ ∈ Θ. The map γ : Θ → Γ serves
us mainly for notational clarity, i. e. for distinguishing between the parameter
space Θ of the distribution and a meta-parameter space Γ; we will also normally
use the canonical map γ(ϑ) = ϑ. The second simplification, Γ0(ϑ) = {ϑ}, leads
to confidence sets corresponding to tests based on simple null hypotheses only.
We will use this simplification in Section 12.3.

Theorem 12.1.1. Let (X ,A, (Pϑ)ϑ∈Θ), γ : Θ → Γ, α, (Γ0(ϑ))ϑ∈Θ, and
(A(γ))γ∈Γ be as above. Define

Θ0(γ) := {ϑ ∈ Θ : Γ0(ϑ) ∋ γ}.

The following two statements are equivalent:

(a) C1−α : X → P(Γ) is a confidence region for γ(ϑ) with confidence level 1−α
based on the family (Γ0(ϑ))ϑ∈Θ.

(b) Pϑ(X ∈ A(γ)) ≥ 1 − α ∀ ϑ ∈ Θ0(γ) ∀ γ ∈ Γ.

Proof.

(a)⇒(b) If C1−α is such a confidence region, then, by the definition of A,

Pϑ(X ∈ A(γ)) = Pϑ(C1−α(X) ∋ γ)

≥ 1 − α ∀ γ ∈ Γ0(ϑ) ∀ ϑ ∈ Θ.

For arbitrary γ ∈ Γ and ϑ ∈ Θ0(γ), γ ∈ Γ0(ϑ) holds by the definition
of Θ0, and (b) follows.

(b)⇒(a) The proof is completely analogous, using C1−α(x) = {γ : A(γ) ∋ x}
and Γ0(ϑ) = {γ : Θ0(γ) ∋ ϑ}.

According to statement (b) in Theorem 12.1.1, for each γ ∈ Γ, A(γ) is the
acceptance region of a non-randomized level α test of H0 : ϑ ∈ Θ0(γ). Therefore,
the desired correspondence between hypothesis tests and confidence regions is
established.

Definition 12.1.2. Using the notation from Definition 12.1.1, let C1−α be a
confidence region for γ(ϑ). Let Γ1(ϑ) ⊂ Γ r Γ0(ϑ),∀ ϑ ∈ Θ.

C1−α is unbiased with respect to (Γ1(ϑ))ϑ∈Θ if

Pϑ(C1−α(X) ∋ γ) ≤ 1 − α ∀ γ ∈ Γ1(ϑ) ∀ ϑ ∈ Θ. △
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Theorem 12.1.2. Let (X ,A, (Pϑ)ϑ∈Θ), γ : Θ → Γ, α, (Γ0(ϑ))ϑ∈Θ, (Γ1(ϑ))ϑ∈Θ,
(A(γ))γ∈Γ, and (Θ0(γ))γ∈Γ be as above. Define

Θ1(γ) := {ϑ ∈ Θ : Γ1(ϑ) ∋ γ}.

Assume that C1−α : X → P(Γ) is a confidence region for γ(ϑ) with confidence
level 1 − α based on the family (Γ0(ϑ))ϑ∈Θ.

The following two statements are equivalent:

(a) C1−α is unbiased with respect to (Γ1(ϑ))ϑ∈Θ.

(b) Pϑ(X ∈ A(γ)) ≤ 1 − α ∀ ϑ ∈ Θ1(γ) ∀ γ ∈ Γ.

Proof. Completely analogous to the proof of Theorem 12.1.1.

Note that Γ1(ϑ) ⊂ Γ r Γ0(ϑ), ∀ ϑ ∈ Θ, is equivalent to Θ1(γ) ⊂ Θ r Θ0(γ),
∀ γ ∈ Γ.

Theorems 12.1.1 and 12.1.2 together state the equivalence of unbiased non-
randomized level α tests and unbiased confidence regions with confidence level 1−
α. If we consider tests for sector or cone alternatives about a multivariate location
parameter with composite null hypotheses (i. e. Θ1(γ) = R

2
r Θ0(γ),∀ γ ∈ Γ),

this equivalence combined with the results from Section 3.2 means that, in general,
we cannot expect to obtain unbiased confidence regions by inverting such tests.

Equivalences of uniformly most powerful (unbiased) tests and confidence re-
gions can also be established – see Witting (1985). Since our focus is primarily
on the appropriateness of methods in terms of respecting the level (and not that
much on optimal power), we do not consider these optimality properties here.

12.2 Shape of the Confidence Region for the

Meta-Parameter γ

Theorem 12.1.1 implies that for each non-randomized test about some parameter
vector ϑ, a corresponding confidence region for the meta-parameter γ(ϑ) accord-
ing to Definition 12.1.1 exists. We can use the connection with the acceptance
region of the test to characterize the shape of the confidence region.

12.2.1 Translations of the Acceptance Region in R
p

One of the simplest cases is the following one, where the parameter ϑ, the obser-
vations, and the test statistic are all of the same dimension, Γ = Θ, γ(ϑ) = ϑ,
∀ ϑ ∈ Θ, and the decision rule is particularly simple:
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Theorem 12.2.1. Let X1, . . . ,Xn be i. i. d. random vectors in R
p having a

distribution Fϑ, with ϑ ∈ Θ ⊂ R
p. Let a non-randomized level α test for

H0 : ϑ ∈ Θ0(γ) vs. H1 : ϑ ∈ Θ r Θ0(γ) be given, and assume that, for each
γ ∈ Θ, this test accepts H0 if and only if some test statistic T (X1, . . . ,Xn) ∈ R

p

is within the acceptance region A(γ).
If the acceptance region is of the form

A(γ) = γ + A

for some A ⊂ R
p, then a confidence region for γ with confidence level 1 − α is

given by

C1−α(T (X1, . . . ,Xn)) = T (X1, . . . ,Xn) − A.

Proof. According to Theorem 12.1.1, the confidence region corresponding to the
given test is

C1−α(T (X1, . . . ,Xn)) = {γ : A(γ) ∋ T (X1, . . . ,Xn)}
= {γ : γ + A ∋ T (X1, . . . ,Xn)}
= {γ : γ ∈ T (X1, . . . ,Xn) − A}
= T (X1, . . . ,Xn) − A.

The assumptions in Theorem 12.2.1 are rather restrictive. However, we can
use it for a formal proof that the confidence region corresponding to a min test
(as defined in Section 5.2) consists of all points that are above the (univariate)
lower confidence bound with respect to at least one component:

Corollary 12.2.2. Let the 1−α lower confidence bounds for γi corresponding to
univariate tests for H0i : ϑi ≤ γi vs. H1i : ϑi > γi be given by ti(X1i, . . . , Xni).
Let a min test for H0 : ∃ i ∈ {1, . . . , p} : ϑi ≤ γi vs. H1 : ϑ > γ be based on
these univariate tests, i. e. it rejects H0 at level α if each univariate tests rejects
its H0i at level α.

The 1 − α confidence region for γ corresponding to this min test can then be
written as

(t1(X11, . . . , Xn1), . . . , tp(X1p, . . . , Xnp))
T + (Rp

r R
p
−).

Proof. Define T (X1, . . . ,Xn) := (t1(X11, . . . , Xn1), . . . , tp(X1p, . . . , Xnp))
T. H0 is

rejected if and only if γi < ti(X1i, . . . , Xni),∀ i ∈ {1, . . . , p}, which is equivalent
to T (X1, . . . ,Xn) ∈ γ + R

p
+. The acceptance region for H0 is therefore A(γ) =

R
p

r (γ + R
p
+) = γ + (Rp

r R
p
+), such that we can apply Theorem 12.2.1 with

A = R
p

r R
p
+, yielding that the 1 − α confidence region for γ is

T (X1, . . . ,Xn) − (Rp
r R

p
+) = T (X1, . . . ,Xn) + (Rp

r R
p
−).
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This result may be astonishing at first glance: While a min test can be used to
show that ϑ ∈ R

2 is in the first quadrant, the corresponding confidence region is a
translated version of the first, second, and fourth quadrant, and it therefore always
contains parts of the second and fourth quadrant. However, we should remember
that our confidence regions are for the meta-parameter γ and that excluding
γ from the confidence region corresponds to rejecting the null hypothesis that
ϑ ∈ Θ0(γ) = γ+(R2

rR
2
+); it is evident that we cannot reject this null hypothesis

with a sensible min test if e. g. γ1 is above every Xi1, even if γ2 is very low.
We will investigate in Sections 12.3 and 12.4 how confidence regions for ϑ itself

can be obtained. For the time being, we try to obtain a result that is similar to
the one above under more general conditions.

12.2.2 Bounds for the Border of the Confidence Region

For a min test, we can write the confidence region as T (X1, . . . ,Xn) − Θ0(0).
Even in more general situations, a similar relationship seems to hold. However,
the shape of the confidence region often only corresponds to the shape given above
in an asymptotic sense, i. e. for parameter values that are distant enough from
the observations.

In order to measure distances between sets, we need the following definitions:

Definition 12.2.1. Let M be a metric space (with metric d) with an origin 0,
and let Br be the open ball of radius r, i. e. Br = {x ∈M : d(0,x) < r}. Let A1

and A2 be subsets of M .

(a) The infimum distance between A1 and A2 is

dinf(A1, A2) = inf
a1∈A1,a2∈A2

d(a1,a2).

(b) The Hausdorff distance between A1 and A2 is

dH(A1, A2) = max{ sup
a1∈A1

inf
a2∈A2

d(a1,a2), sup
a2∈A2

inf
a1∈A1

d(a1,a2)}.

(c) The punched Hausdorff distance with radius r between A1 and A2 is

dr
H(A1, A2) = max{ sup

a1∈A1∩Bc
r

inf
a2∈A2

d(a1,a2), sup
a2∈A2∩Bc

r

inf
a1∈A1

d(a1,a2)}. △

The infimum distance is not a metric (it lacks positivity for overlapping, but
non-identical sets).

The Hausdorff distance is only a metric if we restrict attention to the family
of compact non-empty subsets of M . However, for the comparison of confidence
regions, the difference between sets with the same closure does not seem to be
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of much importance, such that we can use this distance measure for any two
non-empty sets – even for unbounded sets if we are willing to accept distances of
∞.

We introduce the punched Hausdorff distance here to measure how well two
sets agree for points far away from the origin, i. e. after “punching out” the area
around the origin. Therefore, it inevitably lacks positivity when looking at sets
that differ only near the origin. The advantage of looking at this definition instead
of just dH(A1 ∩ Bc

r , A2 ∩ Bc
r) is that some unpleasant properties can be avoided;

especially, dr
H(A1, A2) ≤ dH(A1, A2) holds true for every 0 ≤ r <∞.

The infimum distance corresponds to the perception of the distance between
two objects in everyday life and is 0 whenever two sets (or their closures) have any
point in common. The Hausdorff distance, in contrast, is only 0 if the closures of
both sets agree completely.

We assume in the following that Θ = Γ = R
p. As a first step towards a

more general result about the shape of the confidence region, Lemma 12.2.3 gives
conditions ensuring that the confidence region contains some set of the supposed
shape. (In the following two lemmas, the assumptions are perhaps most plausible
and easier to understand when C is taken to be the alternative parameter region
R

p
r Θ0(0), but the more general versions given here will be useful.)

Lemma 12.2.3. Let a non-randomized level α test for H0 : ϑ ∈ Θ0(γ) vs.
H1 : ϑ ∈ R

p
r Θ0(γ) be given, where Θ0(γ) = γ + Θ0(0) ⊂ R

p, ∀ γ ∈ R
p, the

test being based on random vectors X1, . . . ,Xn ∈ R
p.

Let C ⊂ R
p, C 6= R

p, be a non-empty cone. Assume that

(a) C is convex or

(b) R
p

r C is convex,

and that for each set of observed vectors (x1, . . . ,xn), there is a d0 < ∞ such
that dinf(conv(x1, . . . ,xn),γ + C) > d0 implies that (x1, . . . ,xn) ∈ A(γ), the
acceptance region of the test. (conv denotes the convex hull.)

Then there exists a point c∗(x1, . . . ,xn) ∈ R
p such that c∗(x1, . . . ,xn)−(Rp

r

C) is entirely within the 1 − α confidence region C1−α(x1, . . . ,xn) corresponding
to the test.

Proof.

(a) conv(x1, . . . ,xn) is bounded, and so is conv(x1, . . . ,xn)+Bd0+1, with Bd =
{x ∈ R

p : ‖x‖ < d}. conv(x1, . . . ,xn)+Bd0+1 +(Rp
rC) is therefore a true

subset of R
p, such that we can choose a c∗(x1, . . . ,xn) in its complement.

Let γ = c∗(x1, . . . ,xn) − ϑ∗ with arbitrary ϑ∗ ∈ R
p

r C. Then

γ + C = c∗(x1, . . . ,xn) − ϑ∗ + C

⊂ c∗(x1, . . . ,xn) − (Rp
r C)
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due to Lemma B.5.1. Therefore,

dinf (conv(x1, . . . ,xn),γ + C)

≥ dinf (conv(x1, . . . ,xn), c∗(x1, . . . ,xn) − (Rp
r C))

= dinf (conv(x1, . . . ,xn) + (Rp
r C), {c∗(x1, . . . ,xn)})

≥ d0 + 1 > d0,

the second inequality following from the choice of c∗(x1, . . . ,xn). Because
ϑ∗ ∈ R

p
r C was arbitrary and by the assumption made, this implies that

(x1, . . . ,xn) ∈ A(γ) ∀ γ ∈ c∗(x1, . . . ,xn) − (Rp
r C),

and therefore

c∗(x1, . . . ,xn) − (Rp
r C) ⊂ C1−α(x1, . . . ,xn).

(b) Only a few changes are necessary to adapt the proof of (a):

Choose c∗(x1, . . . ,xn) in the complement of conv(x1, . . . ,xn) +Bd0+1 −C.
With ϑ∗ ∈ R

p
rC and γ = c∗(x1, . . . ,xn)−ϑ∗, use Lemma B.5.1 again to

see that

γ + C = c∗(x1, . . . ,xn) − ϑ∗ + C

⊂ c∗(x1, . . . ,xn) + C.

It then follows that

dinf (conv(x1, . . . ,xn),γ + C)

≥ dinf (conv(x1, . . . ,xn), c∗(x1, . . . ,xn) + C)

= dinf (conv(x1, . . . ,xn) − C, {c∗(x1, . . . ,xn)})
≥ d0 + 1 > d0,

and the rest of the proof can be taken from the proof of (a) again.

In order to approach the border of the confidence region from the side of
its complement, we use the cone order monotonicity property of tests defined in
Section 3.3:

Lemma 12.2.4. Let a non-randomized level α test for H0 : ϑ ∈ Θ0(γ) vs.
H1 : ϑ ∈ R

p
r Θ0(γ) be given, where Θ0(γ) = γ + Θ0(0) ⊂ R

p, ∀ γ ∈ R
p, the

test being based on random vectors X1, . . . ,Xn ∈ R
p. Let the test be translation

invariant and cone order monotone in the sample with respect to the convex cone
C.

Then the 1 − α confidence region C1−α(x1, . . . ,xn) corresponding to the test
has the following properties:
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(a) γ ∈ C1−α(x1, . . . ,xn) ⇒ γ + C ⊂ C1−α(x1, . . . ,xn)

(b) γ 6∈ C1−α(x1, . . . ,xn) ⇒ γ − C ⊂ R
p

r C1−α(x1, . . . ,xn)

Proof. Statement (b) is more important for us, and we therefore prove it first.

(b) The required cone order monotonicity in the sample for a non-randomized
test ϕ means that, for all x1, . . . ,xn ∈ R

p,γ ∈ R
p, δ ∈ C,

ϕ((x1, . . . ,xn),γ) = 1 ⇒ ϕ((x1 + δ, . . . ,xn + δ),γ) = 1, (∗)

where ϕ((x1, . . . ,xn),γ) = 1 denotes the rejection of H0 : ϑ ∈ Θ0(γ).

Take any γ 6∈ C1−α(x1, . . . ,xn) and δ ∈ C. Using (∗) and the translation
invariance (t. i.), we obtain

γ 6∈ C1−α(x1, . . . ,xn) ⇔ (x1, . . . ,xn) 6∈ A(γ)

⇔ ϕ((x1, . . . ,xn),γ) = 1
(∗)⇒ ϕ((x1 + δ, . . . ,xn + δ),γ) = 1
t. i.⇔ ϕ((x1, . . . ,xn),γ − δ) = 1

⇔ (x1, . . . ,xn) 6∈ A(γ − δ)

⇔ γ − δ 6∈ C1−α(x1, . . . ,xn),

which completes the proof of (b).

(a) Let γ ∈ R
p, δ ∈ C. From (b),

γ + δ 6∈ C1−α(x1, . . . ,xn) ⇒ γ 6∈ C1−α(x1, . . . ,xn)

⇔ γ + δ ∈ C1−α(x1, . . . ,xn) ⇐ γ ∈ C1−α(x1, . . . ,xn).

12.2.3 Bivariate Case

In the bivariate case, i. e. Θ = Γ = R
2, the combination of the two lemmas above

gives us enough information to determine the asymptotic (for ‖γ‖ → ∞) shape of
the confidence region in the case where C (or again, as a special case, R

2
rΘ0(0))

is a convex sector.

Theorem 12.2.5. Let a non-randomized level α test for H0 : ϑ ∈ Θ0(γ) vs. H1 :
ϑ ∈ R

2
rΘ0(γ) be given, where Θ0(γ) = γ+Θ0(0) ⊂ R

2, ∀ γ ∈ R
2, the test being

based on random vectors X1, . . . ,Xn ∈ R
2. Let the test be translation invariant

and cone order monotone in the sample with respect to the non-empty sector
C ⊂ R

2 with an angle strictly less than π. Assume that for each set of observed
vectors (x1, . . . ,xn), there is a d0 <∞ such that dinf(conv(x1, . . . ,xn),γ +C) >
d0 implies that (x1, . . . ,xn) ∈ A(γ), the acceptance region of the test. Assume
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Figure 12.1: Proof of Theorem 12.2.5: Application of Lemmas 12.2.3 (a) and
12.2.4 (b) to obtain an angled band that must contain ∂C1−α. Cc = R

2
r C.

further that the 1−α confidence region C1−α(x1, . . . ,xn) corresponding to the test
is a true subset of R

2.
Then there exists a c∗(x1, . . . ,xn) ∈ R

2 such that

dr
H(C1−α(x1, . . . ,xn), c∗(x1, . . . ,xn) − (R2

r C)) → 0 (r → ∞).

Proof. According to Lemma 12.2.3 (a), there exists a point ci(x1, . . . ,xn) ∈ R
2

such that ci(x1, . . . ,xn) − (R2
r C) is entirely within C1−α = C1−α(x1, . . . ,xn)

(“inner bound” for ∂C1−α). We take any point co(x1, . . . ,xn) 6∈ C1−α (which
exists by assumption) and obtain from Lemma 12.2.4 (b) that co(x1, . . . ,xn)−C
is completely outside C1−α (“outer bound” for ∂C1−α). Therefore, ∂C1−α has to
lie within an angled band, as is illustrated for an example in Figure 12.1.

Take now any positive ε.
Considering in a first step only one part of the angled band (e. g. the lower right

part in Figure 12.1), we can use a new coordinate system (y1, y2) as indicated in
the figure. Let y1(x) and y2(x) denote the coordinates of x in this new coordinate
system.

We can interpret {(y1(x), y2(x)) : x ∈ ∂C1−α} as the graph of a function
f : y1 7→ y2 – more precisely, we take f(y1) = sup{y2 : y1 = y1(x), y2 = y2(x)
for some x ∈ ∂C1−α}, which does not make any difference asymptotically due to
the monotonicity ensured by Lemma 12.2.4 (b). f(y1) is monotone and bounded
and therefore converges to a limit f∞ for y1 → ∞, i. e. ∂C1−α is asymptotically
parallel to ∂(ci − (R2

rC)). Therefore, there exists r̃1 <∞ such that f(y1(x)) ∈
(f∞ − ε, f∞] for ‖x‖ > r̃1. We increase this radius r̃1 by the width of the band
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and then call the increased radius r1. This ensures that also each point x on the
asymptote of ∂C1−α with ‖x‖ > r1 is at most ε away from ∂C1−α.

In the same way, we define a radius r2 for the other part of the angled
band that must contain ∂C1−α, and we get the second asymptote of ∂C1−α.
Define r = max{r1, r2}, and choose c∗(x1, . . . ,xn) as the intersection of both
asymptotes of ∂C1−α (which is possible since C is not a half-plane, and there-
fore, the asymptotes are not parallel). It follows by the construction of r that
dr

H(C1−α(x1, . . . ,xn), c∗(x1, . . . ,xn) − (R2
r C)) < ε.

We have used a general sector C (instead of R
2
rΘ0(0), which would be most

intuitive) in Theorem 12.2.5. This has the advantage that we can also apply the
theorem to tests without knowing the (largest) composite null hypothesis that
they can be used for, as can be seen from the following example:

Example 12.2.1. We use the cone/opposite cone test (Section 6.2) for a sector C
with an angle less than π. This test does not respect the level α for the composite
null hypothesis that ϑ ∈ γ + (R2

r C), and the composite null hypothesis that
obviously ensures the level to be respected, ϑ ∈ γ−C, is quite far away from the
shape suggested by the plots in Chapter 11.

However, we know that the test is translation invariant and cone order mono-
tone with respect to C. Further, it is easy to see that dinf(conv(x1, . . . ,xn),γ +
C) > 0 implies that (x1, . . . ,xn) ∈ A(γ) – the test will not be able to reject
at any level α < 0.5 if all observations are outside of γ + C. Whenever the
1−α confidence region obtained by inverting this test is not the entire parameter
space R

2, Theorem 12.2.5 can be applied, and the confidence region is therefore
asymptotically (for ‖γ‖ → ∞) a translated version of −(R2

r C). △

12.3 Confidence Regions for ϑ Based on Simple

Null Hypotheses

From Definition 12.1.1, we obtain confidence regions for γ = γ(ϑ), the meta-
parameter that defines the null and alternative parameter regions Θ0(γ) and
Θ1(γ). The conditions of the following theorem ensure that we can use the same
confidence regions for ϑ itself. (We return to the general notation and write X
for the observed data again, instead of (X1, . . . ,Xn).)

Theorem 12.3.1. With the notation as in Definition 12.1.1, let C1−α : X → P(Γ)
be a confidence region for γ(ϑ) with confidence level 1 − α based on the family
(Γ0(ϑ))ϑ∈Θ.

If Θ = Γ, γ(ϑ) = ϑ,∀ ϑ ∈ Θ, and ϑ ∈ Γ0(ϑ),∀ ϑ ∈ Θ, then

Pϑ(C1−α(X) ∋ ϑ) ≥ 1 − α ∀ ϑ ∈ Θ.
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Proof. By Definition 12.1.1,

Pϑ(C1−α(X) ∋ γ) ≥ 1 − α ∀ γ ∈ Γ0(ϑ) ∀ ϑ ∈ Θ.

Because γ(ϑ) = ϑ is always in Γ0(ϑ) by assumption, the statement follows im-
mediately.

If γ ∈ Θ0(γ), ∀ γ ∈ Θ, then also ϑ ∈ Γ0(ϑ), ∀ ϑ ∈ Θ, and therefore, the
above theorem can be applied to a confidence region corresponding to a test for
H0 : ϑ ∈ Θ0(γ0) against H1 : ϑ ∈ Θ r Θ0(γ0). Therefore, we can derive a 1 − α
confidence region for ϑ from any such level α test. This also implies that for the
purpose of deriving a 1 − α confidence region for ϑ directly from a test, we only
have to ensure that the test for the above hypotheses respects the level α at the
single point γ0, i. e. we can also use a test for a simple null hypothesis against
any alternative such that a confidence region of the desired shape results.

If we just wanted to use this method to obtain confidence regions for ϑ, it
would therefore suffice to consider confidence regions for ϑ itself from the begin-
ning by simplifying Definition 12.1.1 using γ(ϑ) = ϑ and Γ0(ϑ) = {ϑ},∀ ϑ ∈ Θ.
However, we will see in the next section that we can take advantage of our more
general definition of confidence sets for γ(ϑ).

12.4 Sharpened Confidence Regions for ϑ

In the previous section, we obtained confidence regions for ϑ by simply ignoring
the shape of the null parameter region of the underlying test. Of course, we can
try to obtain sharper confidence regions by incorporating this information. (If
we can exclude certain values of ϑ due to a priori restrictions on the parameter
space, we can sharpen the confidence region by intersecting it with the values
that are possible, but this is not a very interesting case.)

In the case of a non-convex Θ0(γ) leading to a non-convex confidence region
C1−α(X) for γ(ϑ), it is tempting to sharpen the confidence region for ϑ by ex-
cluding all points that are contained in any Θ0(γ) with γ 6∈ C1−α(X). However,
this usually means that we apply multiple tests to each point, and therefore, this
procedure does not guarantee the specified confidence level to hold.

To overcome this multiple testing problem, we can restrict ourselves to a
suitable set of γ’s specified in advance:

Theorem 12.4.1. Let C1−α : X → P(Γ) be a confidence region for γ(ϑ) with
confidence level 1− α based on the family (Γ0(ϑ))ϑ∈Θ. Let (Θ0(γ))γ∈Γ be defined
as in Theorem 12.1.1. Further, let {γi}i∈I , I ⊂ R, be a subset of the meta-
parameter space Γ ⊂ R

p such that

Θ0

(
γi1

)
⊂ Θ0

(
γi2

)
∀ i1, i2 ∈ I : i1 < i2.
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As a technical condition, assume that for each subset Ĩ ⊂ I, there exists an i0 ∈ I
such that ⋂

i∈Ĩ

Θ0 (γi) = Θ0

(
γi0

)
.

Define

C̃1−α(X) := Θ r

⋃

i∈I:γi′ 6∈C1−α(X) ∀ i′≤i

Θ0(γi).

Then
Pϑ

(
C̃1−α(X) ∋ ϑ

)
≥ 1 − α ∀ ϑ ∈ Θ.

Proof. Let (ϕi)i∈I be the non-randomized tests for H0i : ϑ ∈ Θ0(γi) correspond-
ing to C1−α, i. e. ϕi(X) = 1(C1−α(X) 6∋ γi). By the definition of a confidence set,
each ϕi is of level α – see Theorem 12.1.1.

For every i ∈ I, define a test ϕ̃i(X) :=
∏

i′≤i ϕi′(X) for H0i, which rejects if
and only if all ϕi′(X) with i′ ≤ i reject. We are in a situation as is described
in Marcus, Peritz, and Gabriel (1976), and from their argument (and using our
technical condition), we can conclude that

Pϑ (ϕ̃i(X) = 0 ∀ i ∈ I : Θ0(γi) ∋ ϑ) ≥ 1 − α ∀ ϑ ∈ Θ.

For arbitrary ϑ ∈ Θ, it therefore follows that

Pϑ

(
C̃1−α(X) ∋ ϑ

)
= Pϑ



Θ r

⋃

i∈I:γi′ 6∈C1−α(X) ∀ i′≤i

Θ0(γi) ∋ ϑ





= 1 − Pϑ




⋃

i∈I:γi′ 6∈C1−α(X) ∀ i′≤i

Θ0(γi) ∋ ϑ





= 1 − Pϑ (∃ i ∈ I : γi′ 6∈ C1−α(X) ∀ i′ ≤ i,Θ0(γi) ∋ ϑ)

= 1 − Pϑ (∃ i ∈ I : ϕ̃i(X) = 1,Θ0(γi) ∋ ϑ)

= Pϑ (ϕ̃i(X) = 0 ∀ i ∈ I : Θ0(γi) ∋ ϑ)

≥ 1 − α.

If I is finite, the technical condition of the above theorem follows from the
assumed inclusion of the null parameter regions, and the modified confidence
region simplifies to

C̃1−α(X) = Θ r Θ0 (γi∗) with i∗ = max {i ∈ I : γi′ 6∈ C1−α(X), ∀ i′ ≤ i}

(or C̃1−α(X) = Θ if an i ∈ I with the desired property does not exist).

A possible application of Theorem 12.4.1 is obtained by using (essentially) the
straight line {(r, . . . , r)T}r∈R ⊂ R

p as the meta-parameters to be examined:
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Corollary 12.4.2. Let C1−α : X → P(Γ) be a confidence region for γ(ϑ) with
confidence level 1− α based on the family (Γ0(ϑ))ϑ∈Θ. Let (Θ0(γ))γ∈Γ be defined
as in Theorem 12.1.1. Assume that Θ0(γ) = γ + Θ0(0), ∀ γ ∈ Γ, that Θ0(0) is
closed, and that

Θ0(γ) ⊂ Θ0(γ + (δ, . . . , δ)T) ∀ γ ∈ Γ, δ > 0.

Let ℓ be any real number. Use γi = (i, . . . , i)T ∈ R
p,∀ i ∈ I = [ℓ,∞).

For C̃1−α as defined in Theorem 12.4.1,

Pϑ

(
C̃1−α(X) ∋ ϑ

)
≥ 1 − α ∀ ϑ ∈ Θ.

Proof. The inclusion of the null parameter regions that is needed for the appli-
cation of Theorem 12.4.1 is obviously fulfilled.

For the technical condition of the theorem, let Ĩ ⊂ I. Because Θ0(γ) =
γ + Θ0(0) and because these regions are closed, we can write

⋂

i∈Ĩ

Θ0 (γi) =
⋂

i∈Ĩ

(γi + Θ0 (0))

= γi0 + Θ0 (0)

= Θ0(γi0),

with i0 = inf Ĩ. Since I is closed at the lower end, i0 ∈ I, and we can apply
Theorem 12.4.1.

An advantage of confidence regions for ϑ based on Corollary 12.4.2 is that
they have the same shape as the alternative parameter region Θ r Θ0(0) of the
corresponding test (cf. the example in Figure 12.2). On the other hand, an
unpleasant property is that the procedure reduces the multivariate confidence
region problem to a univariate problem (a search on the diagonal) and that the
set of possible resulting confidence regions is therefore rather restricted.
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Figure 12.2: Example for the illustration of Corollary 12.4.2: Alternative region
Θ1 = Θ1(0) = R

2
r Θ0(0), confidence region C1−α based on the inversion of a

test for H0 : ϑ ∈ Θ0(γ) vs. H1 : ϑ ∈ R
2

r Θ0(γ), and the sharpened confidence
region C̃1−α obtained from Corollary 12.4.2.
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Chapter 13

Example:
Pulmonary Function Data

We use an example from the literature to illustrate the application of one-sided
tests and the different forms of corresponding confidence regions in the bivariate
case.

13.1 Data

The data used is from Merchant et al. (1975), who investigated the effect of
exposure to cotton dust on several lung function and blood parameters. Ran-
dles (1989), Chakraborty, Chaudhuri, and Oja (1998), and Hettmansperger and
McKean (1998, pp. 335ff) use the change in three of these parameters as an
example data set to which they apply different multivariate location tests.

We apply bivariate methods to two of these three variables – to the change in
forced vital capacity (FVC) and the change in forced expiratory volume (FEV3),
both in liter. These values are given in Table 13.1. In all of the statistical
references mentioned, the difference in FVC for subject 11 is given as −0.01,
whereas it is −0.10 in the original paper. We also use this modified version of
the data for better comparability with these statistical publications.

The conjecture is that the lung function deteriorates under cotton dust ex-
posure, i. e. that the differences in FVC and FEV3 tend to be negative. It is
therefore appropriate to use one-sided location tests and corresponding confi-
dence regions. Different formulations of the exact hypotheses are possible in this
example: We could try to show a deterioration in at least one variable, in both
variables simultaneously, or in some measure combining both variables.

For consistency with our usual setting, we change the signs of both variables.
These data are visualized in Figure 13.1. It is obvious that the two variables
are highly correlated; both Pearson’s and Spearman’s correlation coefficients are
0.90.
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Table 13.1: Pulmonary function data: FVC and FEV3 values used in the example
(“statistical version” of the data as in Randles, 1989).

Subject FVC FEV3

1 −0.11 −0.12
2 0.02 0.08
3 −0.02 0.03
4 0.07 0.19
5 −0.16 −0.36
6 −0.42 −0.49
7 −0.32 −0.48
8 −0.35 −0.30
9 −0.10 −0.04

10 0.01 −0.02
11 −0.01 −0.17
12 −0.26 −0.30
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Figure 13.1: Scatter plot of the data in Table 13.1 (dots), with reversed signs.
The circle indicates the original data point for subject 11, and the arrow indicates
the movement of this point as it entered the statistical literature.
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Table 13.2: Test results (p-values) for the data as in Table 13.1 and for the original
data from Merchant et al. (1975).

Test Table 13.1 Original data
sign min test 0.0730 0.0730
Wilcoxon min test 0.0227 0.0227
cone/opposite cone 0.0547 0.0547
Ssgn,s 0.0209 0.0252
SRandles,s 0.0260 0.0185
SLarLab 0.0437 0.0437
SLarLab,s 0.0217 0.0217
Brown’s angle test 0.0236 0.0219
O’Brien/Wilcoxon 0.0154 0.0092
Perlman (conservative bound) 0.0388 0.0220
t min test 0.0129 0.0129
Glimm/Srivastava/Läuter 0.0216 0.0120
spatial sign test 0.0949 0.0731
Randles’s Qd test 0.0737 0.0344
Blumen’s bivariate sign test 0.0727 0.0255
Hotelling’s T 2 0.0578 0.0331

13.2 Tests

Table 13.2 shows the results of the tests compared in Chapter 11 when we apply
them to these data. The test results are given for the data as in Table 13.1 as
well as for the original data set from Merchant et al. (1975).

While the four tests for an unrestricted alternative would not reject the null
hypothesis at the level 0.05, most of the tests for restricted alternatives would.
Notice also that the effect of changing one point is considerable for many tests:
Three of the four tests for an unrestricted alternative would have rejected at
the level 0.05 for the original data, and even some of the (allegedly more robust)
nonparametric methods are remarkably affected. The min tests are not affected –
they benefit from the fact that the change only happened in the “less significant”
variable. The cone/opposite cone test does not change its p-value either because
the moved point stays within the first quadrant, and SLarLab and SLarLab,s, too,
lead to the same p-value for both versions of the data.

13.3 Confidence Regions

We can numerically invert these tests at the nominal level α in order to obtain
nominal 1 − α confidence regions. We do this by testing H0 : ϑ = γ for each
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point γ on a grid. Because each of the tests used respects the level α for this
simple null hypothesis, we can interpret the confidence regions thus obtained as
1 − α confidence regions for ϑ – see Section 12.3. In Figure 13.2, the borders
of the confidence regions obtained using a grid of {−1,−0.99,−0.98, . . . , 1}2 and
α = 0.05 are shown; each class of tests according to the list on page 67 is shown
in a separate panel of the figure.

The confidence region for the meta-parameter γ is the region inside the curve
for the first class of tests (unrestricted alternative tests, part (a) of Figure 11.3).
Whereas Hotelling’s T 2 produces an elliptical confidence region, the confidence
regions of the three nonparametric tests are all star-shaped and can hardly be
distinguished in the plot.

The confidence region corresponding to each of the restricted alternative tests
is the region above and to the right of the curve, i. e. it contains the upper right
corner of the plot. It is instructive to compare these confidence regions to the
curves of power 0.05 in Figure 11.3 (b). (Our data do not appear to be too far
away from a normal distribution, and they are strongly positively correlated.)
The shape of the confidence region is always quite similar to −Θ̃0 when we define
Θ̃0 as the region where the power is below 0.05. Deviations occur mainly in
the central portion of the border. When we interpret Θ̃0 as the “idealized” null
parameter region for some test under the given distribution, we see that a result
similar to Theorem 12.2.5 seems to hold under far more general conditions: E. g.,
the conservative tests for a three-quadrant null hypothesis vs. a one-quadrant
alternative (Figure 13.2 (f)) produce confidence regions that are translations of
the complement of the negative quadrant, i. e. translations of −Θ0. This follows
from Corollary 12.2.2. But also for the liberal tests for the same hypotheses
(Figure 13.2 (e)), the shape of the confidence region only slightly deviates from
a suitable translation of −Θ0, and the border of the confidence region seems to
converge to this shape when moving away from the origin. The shape of the
confidence region is again very similar to that of −Θ̃0. With −Θ̃0, analogous
observations can also be made for the other classes of tests. E. g., for Perlman’s
test, the confidence region does not resemble a translated version of −Θ0, which
would be the positive quadrant. But this test does not maintain the specified
level anyhow for this composite null hypothesis in the positively correlated case,
and again, the confidence region has a shape very similar to that of −Θ̃0, as can
both be seen from Figure 11.3 (b).

From Section 12.3, we know that we only have to guarantee the level of a
test to be inverted at the simple null hypothesis ϑ = 0. It would therefore
be plausible that the best (i. e. smallest in some sense) confidence regions are
obtained by inverting tests that (approximately) reach their nominal level α at
the simple null hypothesis. However, we can see that the confidence regions in
Figure 13.2 (e) are at least not uniformly better than e. g. that of the Wilcoxon
min test, even though they are based on tests with a level near α for the simple
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Figure 13.2: 95% confidence regions according to Section 12.3.
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Figure 13.3: Sharpened 95% confidence regions according to Corollary 12.4.2.

null hypothesis. Especially if our main interest is in obtaining a confidence region
that does not include any point in the third quadrant, the confidence region based
on the Wilcoxon min test could be a good choice, even though this test does not
attain the nominal level at the simple null hypothesis.

Finally, we look at the sharpened confidence regions obtained from the appli-
cation of Corollary 12.4.2 to the confidence regions obtained from inverting the
min tests. These are given in Figure 13.3. Here, the shape of the confidence
region corresponds to that of the alternative parameter region R

2
+, and at least

the sharpened confidence regions obtained from the Wilcoxon and t min tests are
uniformly better than the confidence region obtained by inverting the test based
on SLarLab (see Figure 13.2 (b)), which has a similar shape. In this example,
the sharpened confidence regions benefit from the fact that the data points are
situated rather close to the diagonal.
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Chapter 14

Discussion and Outlook

A large part of the work for this thesis consisted in studying articles from the
areas of multivariate statistics, nonparametric methods, multiple testing, and
other related subjects, in summarizing and combining the relevant results, as
well as in the implementation of methods in the R programming language. As
independent and novel contributions, the following aspects are worth mentioning,
and most of them suggest possibilities for further work:

• Several novel one-sample test procedures were proposed for multivariate
restricted alternative problems, with a focus on convex sector and cone
alternatives.

• The graphical method proposed in Section 10.3 seems to be useful for eval-
uating tests for a specific combination of composite null and alternative
hypotheses. Further work could involve a more detailed study of possible
applications in higher dimensions.

An algorithm for the estimation of the curve of constant power (in the
bivariate case) is given in Appendix C. While this algorithm worked rea-
sonably well for the simulations done in Chapter 11, it would be interesting
to investigate its theoretical properties and possibly to develop a faster
and/or more accurate algorithm. Especially for the investigation of boot-
strap tests (as those in Minhajuddin, Frawley, Schucany, and Woodward,
2006), a faster algorithm would be very useful.

• The simulations from Chapter 11 were used to obtain a classification of tests.
Although simulations with other distributions, parameters, and sample sizes
should be done to verify this classification, it does not seem to vary too
much as long as the assumptions for the tests used are fulfilled. Different
alternative parameter regions could also be investigated for the tests that
allow for a general sector alternative.
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• In Chapter 12, a flexible notation for confidence regions corresponding to
restricted alternative tests was given. This notation allowed for statements
about the shape of confidence regions for multivariate location parameters
and also for the construction of refined confidence regions in Section 12.4.

As there does not seem to be any similar work in the literature, many ex-
tensions can be thought of: Sharper results about the shape of a confidence
region corresponding to a test in dimension p > 2 can be expected, and
Theorem 12.2.5 (for the bivariate case) is likely to hold under less stringent
assumptions, as can be guessed from the example in Chapter 13. Finally,
there will certainly be alternatives to the method in Section 12.4 for ob-
taining confidence regions for ϑ itself that are of a desirable shape.

Since our focus was on the one-sample case, an obvious area for further re-
search consists in the development of similar methods for two- and multi-sample
cases.
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Appendix A

Symmetry Centers and
Expectations

A.1 Interpretation of Symmetry Centers Using

Expectations

Theorem A.1.1. Let X have a diagonally symmetric distribution with respect
to ϑ, and let E(X) exist.

Then

E(X) = ϑ.

Proof. Diagonal symmetry with respect to ϑ means that X − ϑ
d
= ϑ − X.

Therefore,

E(X) − ϑ = E(X − ϑ) = E(ϑ − X) = ϑ − E(X),

such that 2 E(X) = 2ϑ.

Corollary A.1.2. Let X have a directionally symmetric distribution with respect
to ϑ.

Then

E(sgn X − ϑ) = 0.

Proof. Directional symmetry of X with respect to ϑ implies diagonal symmetry
of sgn X − ϑ with respect to 0. As the expected spatial sign always exists, we
can apply Theorem A.1.1 and immediately obtain the result.

By these results, the simple null hypothesis H0 : ϑ = 0 implies E(X) = 0
(under diagonal symmetry and existence of the expectation) and E(sgn X) =
0 (under directional symmetry). Therefore, a rejection of one of these more
specialized hypotheses can also be interpreted as a rejection of H0.
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A.2 Direction of the Expected Spatial Sign

The hypotheses for the one-sided versions of the spatial sign test (Chapter 7) and
of the sign test by Randles (Chapter 8) are formulated in terms of expected spatial
signs. While the results from the previous section are helpful in the interpretation
of the null hypotheses of these tests, we would also like to have some knowledge
about the relationship between the expected spatial sign and the expectation of
the original observations under ϑ 6= 0 for the comparison with other tests.

Theorem A.2.1. Let X be a random vector in R
p, and let its distribution F be

directionally symmetric with respect to ϑ = E(X) 6= 0.
If E(sgn X) 6= 0, then

E(sgn X)T E(X) > 0.

Proof. Without loss of generality, assume that ϑ = (ϑ1, 0, . . . , 0)T with ϑ1 > 0
(by a rotation of the coordinate system). Consider the conditional expectation
of sgn X given that X lies on some line through ϑ specified by v ∈ R+ × R

p−1,
with ‖v‖ = 1 and v 6= sgn ϑ. (We are only interested in lines through ϑ that
X can lie on, and for these lines, the conditional expectation exists.) The most
important step of the proof is to show that the first component of this conditional
expectation is greater than 0. By the directional symmetry,

E(sgn X|X ∈ {ϑ + cv : c ∈ R r {0}})

=
1

2
[E(sgn X|X ∈ {ϑ + cv : c > 0}) + E(sgn X|X ∈ {ϑ + cv : c < 0})] .

(∗)

Let ϕ = arccos vTϑ
‖ϑ‖ = arccos v1 ∈ (0, π

2
) be the angle between ϑ and v.

Further, let

α = arccos
E(sgn X|X ∈ Rv)Tϑ

‖E(sgn X|X ∈ Rv)‖ ‖ϑ‖
be the angle between ϑ and the expected spatial sign given X ∈ Rv = {ϑ + cv :
c > 0}. Necessarily, α ∈ (0, ϕ). Moreover, E(sgn X|X ∈ Rv) is within the
circular segment shown in Figure A.1. From this figure, we can see that for a
given α, the norm of E(sgn X|X ∈ Rv) tends towards its infimum if X = ϑ+ 1

c
v

with some probability q
q+1

and X = ϑ + cv with probability 1
q+1

, where c → ∞.

In the limiting case, sgn(ϑ + 1
c
v) → sgn ϑ = (1, 0, . . . , 0)T, and sgn(ϑ + cv) →

v = (cosϕ, v2, . . . , vp)
T, with
√
v2

2 + . . .+ v2
p =

√
1 − (cosϕ)2 = sinϕ.

q has to satisfy

tanα =

q
q+1

· 0 + 1
q+1

sinϕ
q

q+1
· 1 + 1

q+1
cosϕ

=
sinϕ

q + cosϕ
.
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Figure A.1: Notation for the proof of Theorem A.2.1. The figure shows the plane
spanned by ϑ and v.

Therefore, q = sin ϕ
tan α

− cosϕ. This yields the following lower bound for the first
component of E(sgn X|X ∈ Rv):

E(sgn X|X ∈ Rv)1 >
q

q + 1
· 1 +

1

q + 1
cosϕ =

1

q + 1
(q + cosϕ)

=
1

sin ϕ
tan α

− cosϕ+ 1
· sinϕ

tanα
=

sinϕ

sinϕ+ tanα(1 − cosϕ)

>
sinϕ

sinϕ+ tanϕ(1 − cosϕ)
=

1

1 + 1−cos ϕ
cos ϕ

= cosϕ

A simple lower bound for the first component of the second term on the right-
hand side of (∗) is

E(sgn X|X ∈ {ϑ + cv : c < 0})1 > cos(ϕ+ π) = − cosϕ,

and therefore (∗) yields

E(sgn X|X ∈ {ϑ + cv : c ∈ R r {0}})1 >
1

2
[cosϕ− cosϕ] = 0.

We can easily deal with the remaining special cases:

E(sgn X|X ∈ {cϑ : c ∈ R})1

= P(X1 > 0|X ∈ {cϑ : c ∈ R}) − P(X1 < 0|X ∈ {cϑ : c ∈ R}) ≥ 0
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because of the choice of the coordinate system, with equality holding only if
E(sgn X|X ∈ {cϑ : c ∈ R}) = 0. Further, for v ∈ {0} × R

p−1, E(sgn X|X ∈
{ϑ + cv : c ∈ R r {0}}) trivially has a positive first component.

Integration over the condition yields E(sgnX)1 > 0 (equality could only be
obtained with P(X ∈ {cϑ : c ∈ R}) = 1 and E(sgn X|X ∈ {cϑ : c ∈ R}) = 0,
but then E(sgn X) = 0, which is excluded by assumption). Therefore

E(sgn X)T E(X) = E(sgn X)1ϑ1 > 0.

According to Theorem A.2.1, the directions of E(X) and E(sgn X) deviate by
an angle of less than π

2
for directionally symmetric distributions. The following

example shows that no sharper bound can be given for this general situation.

Example A.2.1. Let X be a bivariate random vector taking the values (3, ε)T

and (−1, ε)T, each with probability 1
2
, for some ε > 0. X is directionally sym-

metric with respect to (0, ε)T, and obviously, E(X) = (1, ε)T → (1, 0)T for ε→ 0.
The possible values of sgn X, again each occurring with probability 1

2
, are

(3/
√

9 + ε2, ε/
√

9 + ε2)T and (−1/
√

1 + ε2, ε/
√

1 + ε2)T. Therefore, E(sgn X) =
c(3

√
1 + ε2 −

√
9 + ε2, ε

√
1 + ε2 + ε

√
9 + ε2)T, with c = 1/(2

√
1 + ε2

√
9 + ε2).

Let β ∈ [0, π/2) be the angle between the first coordinate axis and E(sgnX).
By the Maclaurin expansion

√
1 + x = 1 + x

2
+ O(x2) (x→ 0),

tan β =
ε
√

1 + ε2 + ε
√

9 + ε2

3
√

1 + ε2 −
√

9 + ε2
=
ε
(
1 + ε2

2
+ 3 + 3ε2

18
+ O(ε4)

)

3 + 3ε2

2
− 3 − 3ε2

18
+ O(ε4)

=
ε (4 + O(ε2))

ε2
(

4
3

+ O(ε2)
) → ∞ (ε→ 0),

and β → π
2
. Thus, the directions of E(X) and E(sgn X) deviate by an angle

approaching π
2

as ε→ 0. △

We can also find (restrictive) symmetry conditions that guarantee the direc-
tions of E(X) and E(sgn X) to coincide:

Theorem A.2.2. Let X be a random vector in R
p, and let its distribution F be

diagonally symmetric with respect to ϑ = E(X) 6= 0. Further, let F be symmetric
with respect to the hyperplane through the point ϑ that is orthogonal to the vector
ϑ, in the sense that

dF (x) = dF

(
x − 2

(
xTϑ

‖ϑ‖ · ϑ

‖ϑ‖ − ϑ

))
,∀ x ∈ R

p.

Then
E(sgn X) = cE(X) = cϑ

for some c > 0.
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Proof. Without loss of generality, as in the proof of Theorem A.2.1, assume ϑ =
(ϑ1, 0, . . . , 0)T with ϑ1 > 0. The second symmetry condition therefore simplifies
to

dF (x) = dF
(
(2ϑ1 − x1, x2, . . . , xp)

T
)
,∀ x ∈ R

p.

Combining this with the diagonal symmetry with respect to ϑ, we obtain

dF (x) = dF
(
(x1,−x2, . . . ,−xp)

T
)
,∀ x ∈ R

p,

i. e. symmetry with respect to the first coordinate axis, or, in the general case,
the straight line given by ϑ. In other words, conditional on every hyperplane
that is orthogonal on ϑ, the distribution is diagonally symmetric with respect to
the point of intersection of the hyperplane and the line given by ϑ. Therefore,
E(sgn X|X1 = t) = c(t)ϑ for some real-valued function c(t), with sgn c(t) = sgn t.

Due to the diagonal symmetry assumption, the contribution of some point x

with x1 = t > ϑ1 to E(sgn X|X1 = t) is equally important as that of 2ϑ − x

to E(sgn X|X1 = 2ϑ1 − t). Given that only the first component is nonzero
in these conditional expectations, we can focus on the first component of each
contribution. Under x1 = t > ϑ1, by elementary geometrical considerations,

(sgn x)1 =
t√

t2 + ‖x‖2 − t2
>

|2ϑ1 − t|√
(2ϑ1 − t)2 + ‖x‖2 − t2

= |(sgn(2ϑ − x))1| ,

the inequality being due to the monotonicity of t 7→ t/
√
t2 + a2 and the fact that

|2ϑ1 − t| < t. Therefore, still for t > ϑ1, c(t) > |c(2ϑ1 − t)|, such that

c(t) + c(2ϑ1 − t) > 0. (∗)

Now

E(sgn X)

=

∫ ∞

0

E(sgn X|X1 = ϑ1 + s) dP(X1 = ϑ1 + s)

+

∫ ∞

0

E(sgn X|X1 = ϑ1 − s) dP(X1 = ϑ1 − s)

=

∫ ∞

0

1

2
[E(sgn X|X1 = ϑ1 + s) + E(sgn X|X1 = ϑ1 − s)] dP(|X1 − ϑ1| = s)

=

∫ ∞

0

1

2
[c(ϑ1 + s) + c(ϑ1 − s)]ϑ dP(|X1 − ϑ1| = s),

and according to (∗), the expression in brackets is positive, which completes the
proof.
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Appendix B

Underlying Results

B.1 Asymptotic Distribution of Random Vec-

tors

Theorem B.1.1. Let (Xn)n∈N be a sequence of random vectors in R
p, (Y n)n∈N

a sequence of random vectors in R
q, Xn

d→ X, and Y n
d→ Y . Further, let one

of the following conditions hold:

(a) Y is a. s. a constant, or

(b) Xn and Y n are stochastically independent for each n ∈ N.

Then (Xn,Y n)
d→ (X,Y ), with F(X,Y )(x,y) = FX(x)FY (y).

Proof. See Witting and Nölle (1970), Hilfssatz 2.5.

Theorem B.1.2. Let (Xn)n∈N be a sequence of random vectors in R
p and g :

R
p → R

q be continuous at every point in a set C such that P(X ∈ C) = 1.

(a) Let Xn
d→ X. Then g(Xn)

d→ g(X).

(b) Let Xn
p→ X. Then g(Xn)

p→ g(X).

Proof. See van der Waart (1998), Theorem 2.3 (i), (ii).

Theorem B.1.3. Let (Xn)n∈N, (Y n)n∈N be sequences of random vectors in R
p,

Xn
d→ X, and Xn − Y n

p→ 0. Then Y n
d→ X.

Proof. See van der Waart (1998), Theorem 2.7 (iv).

Theorem B.1.4. Let (Xn)n∈N be a sequence of random vectors in R
p, Xn

d→
Np(0,Σ), Σ positive definite, Σ−1

n

p→ Σ−1. Then:
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(a) Σ− 1
2 Xn

d→ Np(0, Ip)

(b) XT
nΣ−1Xn

d→ χ2(p)

(c) Σ
− 1

2
n Xn

d→ Np(0, Ip)

(d) XT
nΣ−1

n Xn
d→ χ2(p)

Proof. See Fahrmeir and Hamerle (1984), Satz 3.11.

B.2 Inequalities for Binomial Probabilities

Theorem B.2.1. Let Bn denote a random variable from a binomial distribution
with parameters n and 0.5, with n ≥ 1.

For k ∈ {0, . . . , n},

P(Bn+1 ≥ k + 1) < P(Bn ≥ k) ≤ P(Bn+1 ≥ k).

Proof. Using the well-known relationship

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
,

we obtain

P(Bn ≥ k) =
1

2n

n∑

ℓ=k

(
n

ℓ

)

=
1

2n+1

[(
n

k

)
+

n−1∑

ℓ=k

(
n

ℓ

)
+

n∑

ℓ=k+1

(
n

ℓ

)
+

(
n

n

)]

=
1

2n+1

[(
n

k

)
+

n∑

ℓ=k+1

((
n

ℓ− 1

)
+

(
n

ℓ

))
+ 1

]

=
1

2n+1

[(
n

k

)
+

n∑

ℓ=k+1

(
n+ 1

ℓ

)
+

(
n+ 1

n+ 1

)]

=
1

2n+1

[(
n

k

)
+

n+1∑

ℓ=k+1

(
n+ 1

ℓ

)]
.

(
n
k

)
is positive, which yields the first inequality stated. Because

(
n
k

)
≤
(

n+1
k

)
, the

second inequality follows.
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B.3 Minimum of Two Projections of an N2(0, I2)

Random Vector

Lemma B.3.1. Let Z = (Z1, Z2)
T be distributed as N2(0, I2), i. e. bivariate nor-

mal with E[Z] = 0 and covariance matrix I2 =
(
1 0
0 1

)
. Further, let ϕ1, ϕ2 be the

angles of the projections Y1 = (cosϕ1, sinϕ1)Z and Y2 = (cosϕ2, sinϕ2)Z. Then
the distribution of Y = (Y1, Y2)

T is N2(0,Σ), with Σ =
(
1 ρ
ρ 1

)
and ρ = cos(ϕ2−ϕ1).

Proof. The expectations and variances of Y1 and Y2 are trivial. Let ϕ = ϕ2 −ϕ1.
To calculate the covariance, assume, without loss of generality, that ϕ1 = 0 (by
a rotation of the coordinate system). Then Cov(Y1, Y2) = Cov(Z1, Z1 cosϕ +
Z2 sinϕ) = cosϕ · VarZ1 = cosϕ.

Lemma B.3.2. Let Y = (Y1, Y2)
T be distributed as N2(0,Σ) with Σ =

(
1 ρ
ρ 1

)
.

Then the density function of Ym = min(Y1, Y2) is

fYm(y) = 2φ(y)

[
1 − Φ

(
y

√
1 − ρ

1 + ρ

)]
,

where φ and Φ are the density function and the cumulative distribution function
of the standard normal distribution, respectively.

Proof. Consider first |ρ| < 1. The joint density function of Y1 and Y2 is

f(Y1,Y2)(y1, y2) =
1

2π
√

det Σ
exp

(
−1

2
yTΣ−1y

)

=
1

2π
√

1 − ρ2
exp

(
− 1

2(1 − ρ2)

(
y2

1 − 2ρy1y2 + y2
2

))
.

Integration over all (y1, y2) such that min(y1, y2) = y yields

fYm(y) =

∫ ∞

y

f(Y1,Y2)(y, t) dt+

∫ ∞

y

f(Y1,Y2)(t, y) dt

= 2

∫ ∞

y

1

2π
√

1 − ρ2
exp

(
− 1

2(1 − ρ2)

(
y2 − 2ρyt+ t2

))
dt

= 2
1√
2π

exp

(
−y

2 − y2ρ2

2(1 − ρ2)

)∫ ∞

y

1√
2π
√

1 − ρ2
exp

(
− (t− ρy)2

2(1 − ρ2)

)
dt

= 2φ(y)

[
1 − Φ

(
y

√
1 − ρ

1 + ρ

)]
.

For ρ = 1, the statement is obviously correct: Φ(0) = 1
2

leads to fYm(y) = φ(y).
For ρ = −1, interpreting [1− (−1)]/[1 + (−1)] as +∞ (because only the limit for
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ρ ↓ −1 is meaningful), and using Φ(+∞) = 1 and Φ(−∞) = 0, we can simplify
the statement to

fYm(y) =

{
2φ(y) y < 0,

0 y > 0,

which is also easily seen to be correct.

Theorem B.3.3. Let Y1, Y2 be projections of an N2(0, I2) random vector as in
Lemma B.3.1. Then the density function of Ym = min(Y1, Y2) is

fYm(y) = 2φ(y)

[
1 − Φ

(
y

√
1 − ρ

1 + ρ

)]
,

where ρ = cos(ϕ) and ϕ is the angle between the two projections.

Proof. Immediate combination of the two preceding lemmas.

B.4 Maximum of a Symmetric Binary Random

Walk

Theorem B.4.1. Let a symmetric binary random walk Wj on Z be defined as
follows:

P(Zi = −1) = P(Zi = +1) =
1

2
(i = 1, . . . , n),

W0 = 0,

Wj =

j∑

i=1

Zi (j = 1, . . . , n),

where the Zi are independent.
Then, for w ∈ {−n,−n+2, . . . , n−2, n} and b ∈ {max(0, w), . . . , (n+w)/2},

P

(
max
0≤j≤n

Wj ≥ b

∣∣∣∣Wn = w

)
=

(
n

(n+2b−w)/2

)
(

n
(n+w)/2

) .

Proof. Note first that for each path starting at 0 and ending at w, the number of
upward steps,

∑n
i=1 1(Zi = +1), is w + (n− w)/2 = (n+ w)/2.

We can use the reflection principle as follows to establish a one-to-one corre-
spondence between paths starting at 0, reaching b at some time, and ending at
w, and paths starting at 0 and ending at 2b−w: From the first time j0 the path
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Figure B.1: A path starting at 0, reaching b at j0, and ending at w (dots), and the
corresponding path starting at 0 and ending at 2b−w (circles), which is obtained
by reflecting the second part of the original path at the dashed line.

reaches b, we reflect the path at the horizontal line at level b (cf. Figure B.1).
Because each such path (original or reflected) has probability 1/2n,

P

(
max
0≤j≤n

Wj ≥ b,Wn = w

)
= P(Wn = 2b− w)

=
1

2n

(
n

(n+ 2b− w)/2

)
.

The conditional probability is therefore

P

(
max
0≤j≤n

Wj ≥ b

∣∣∣∣Wn = w

)
=

P(max0≤j≤nWj ≥ b,Wn = w)

P(Wn = w)

=

1
2n

(
n

(n+2b−w)/2

)

1
2n

(
n

(n+w)/2

)

=

(
n

(n+2b−w)/2

)
(

n
(n+w)/2

) .

B.5 Convex Cones

Lemma B.5.1. Let C ⊂ R
p be a convex cone, a ∈ C, and b ∈ −(Rp

r C).
Then a + b ∈ −(Rp

r C).

Proof. Assuming that a ∈ C, b ∈ −(Rp
rC), and that a+b 6∈ −(Rp

rC) leads to
a contradiction: First note that C +C ⊂ C because C is positively homogeneous
and convex (a1,a2 ∈ C ⇒ 2a1, 2a2 ∈ C ⇒ a1 + a2 = 1

2
(2a1) + 1

2
(2a2) ∈ C).

a + b 6∈ −(Rp
r C) ⇒ a + b ∈ −C ⇒ b ∈ −C − C ⊂ −C,

which contradicts the second assumption.
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Appendix C

Algorithm for the Estimation of
the Curve of Constant Power

The curves of constant power β in Figures 11.3–11.5 were estimated using the
following algorithm:

1. Define a grid of points {−kδ,−(k − 1)δ, . . . , (k − 1)δ, kδ}2.

2. Estimate the power at ϑ = 0 by simulation.

3. If the estimated power is above β, move to the left and downwards, else
move to the right and upwards on the diagonal. Estimate the power at
each grid point by simulation; continue until β is crossed. Mark the last
two points (one having estimated power above and one below β) visited on
the diagonal as interesting.

4. For each interesting point P , estimate the power at its upper, lower, left, and
right neighbors N1, . . . , N4 on the grid by simulation. Mark all the neigh-
bors as interesting if the set of the estimated power values at P,N1, . . . , N4

contains values above and below β. Repeat this step until the power for the
neighbors of all interesting points has been estimated. (This yields a band
of points that should contain the desired curve.)

5. Drop all points with an estimated power that is too far away from β (e. g.
using some binomial confidence interval based on the success probability
β).

6. Use the principal curve (Hastie and Stuetzle, 1989) of the remaining points
to estimate the curve of power β.

Steps 2.–4. are used to reduce computation time; in principle, we could simply
estimate the power by simulation at all grid points instead.
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If the curves are known to be symmetric about the diagonal ϑ2 = ϑ1 (as is
the case for all examples in Figures 11.3 and 11.4), we only need to estimate the
power for grid points on one side of the diagonal.

For the curves in Figures 11.3–11.5, a grid spacing of δ = 0.02 and 5,000 simu-
lations per grid point were used. For step 6., the R package princurve (S original
by Trevor Hastie, R port by Andreas Weingessel), version 1.1-7, was used. The
parameters for the principal.curve function were chosen as smoother=’lowess’ and
f=0.05, which seemed to result in acceptably smooth curves without introducing
too much bias.
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affine transformation, 11
angle test, 19
asymptotics, 101

binomial distribution, 29–30, 102

component permutation, 11
componentwise homeomorphism, 12
componentwise strictly monotone

transformation, 12
composite hypothesis, 7
cone, 5

convex, 5, 105
s-simply-connected, 7

cone order monotonicity, 15, 79–80
cone/opposite cone test, 29–30
confidence region, 73
curve of constant power, 58–62, 106

diagonal symmetry, 17, 96
direction alternative, 4
directional symmetry, 17, 96
distance

of sets, 77
dual

positive, see positive dual

elliptical directions class, 16
elliptical symmetry, 16
exponential radius distribution, 71

Hausdorff distance, 77
Hodges(–Ajne) test, 44
homeomorphism, 12

indifference region, 8

inequality symbols
for vectors, 19

infimum distance, 77
intersection-union test, 28
invariance, 12

location transformation, 11

meta-analysis, 25
min test, 28, 76
monotone trend problem, 10, 24
monotonicity

cone order, see cone order
monotonicity

multi-sample problem, 10, 23
multiple testing, 24, 26, 83

non-inferiority, 8, 66, 69

O’Brien/Wilcoxon test, 63
one-quadrant alternative, 5
one-sample problem, 3, 19
orthant, 7
orthogonal transformation, 11

point hypothesis, 7
positive dual, 15, 46
positively homogeneous set, 5
principal curve, 106
punched Hausdorff distance, 77

random walk
binary, symmetric, 47, 104

rank
spatial, see spatial rank

reflection principle, 104
rejection region, 51



116 Index

rotation, 11

scale transformation, 11
sector alternative, 5
sign

spatial, see spatial sign
simple hypothesis, 7
spatial rank, 32
spatial sign, 32, 96–100
spatial sign test, 32–38
spatial signed rank test, 38
spherical directions class, 16
spherical symmetry, 16
strongly stochastically smaller, 22
symmetry, 16, 96

t distribution, 69
three-quadrant alternative, 5
transformation, 11–14
translation, 11

of hypotheses, 10
two-sample problem, 10, 22

unbiasedness
confidence region, 74–75
test, 14, 58, 75

union-intersection test, 28
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